Search results for "Ohm"

showing 10 items of 73 documents

La música en el realisme cinematogràfic d’Eric Rohmer

2021

Aquest article reflexiona sobre la presència de la música en l’obra assagística i cinematogràfica d’Eric Rohmer des d’una perspectiva interdisciplinària que té en compte el pensament de l’autor sobre altres arts, especialment sobre la literatura i el cinema. El nostre objectiu és mostrar la important reflexió sobre la creació i la recepció artística que va realitzar aquest autor a través del gènere literari de l’assaig i que va portar a la pràctica de manera coherent en les seues pel·lícules. La seua perspectiva realista, inspirada en la crítica cinematogràfica de Bazin i l’obra literària de Balzac, influeix en la seua manera de concebre i utilitzar la música en el cinema.

Literature and Literary TheoryLanguage and LiteraturePCinematografiaAssaig | Música | Cinema | Eric Rohmer | Interdisciplinarietat | Realisme452ºF. Revista de Teoría de la literatura y Literatura Comparada
researchProduct

La seconda chance. Rohmer e l'arte di raccontare

2020

Il cinema di Rohmer è un cinema letterario? Prima di diventare regista Maurice Schérer (che non ha ancora adottato lo pseudonimo sotto il quale è conosciuto da tutti i cinefili) è stato uno scrittore. E nel primo dei tre grandi cicli in cui si colloca la maggior parte della sua opera - i Racconti morali - ha ripreso e adattato le sue novelle di tanti anni prima. La letterarietà dei Racconti morali è soprattutto legata a un uso molto sostenuto della voce fuori campo. L'abbandono di questa modalità narrativa sarà l'aspetto più evidente di un progressivo distacco dalla letteratura: la sua vocazione di narratore troverà nel cinema una dimensione completamente diversa. Is Rohmer's cinema a liter…

LiteratureSettore L-FIL-LET/14 - Critica Letteraria E Letterature ComparateLetteraturaRohmerCinema
researchProduct

Multipore membranes with nanofluidic diodes allowing multifunctional rectification and logical responses

2016

[EN] We have arranged two multipore membranes with conical nanopores in a three-compartment electrochemical cell. The membranes act as tunable nanofluidic diodes whose functionality is entirely based on the pH-reversed ion current rectification and does not require specific surface functionalizations. This electrochemical arrangement can display different electrical behaviors (quasi-linear ohmic response and inward/outward rectifications) as a function of the electrolyte concentration in the external solutions and the applied voltage at the pore tips. The multifunctional response permits to implement different logical responses including NOR and INHIBIT functions.

Logic functionsTechnologyMaterials sciencePhysics and Astronomy (miscellaneous)NanotechnologyNanofluidics02 engineering and technology010402 general chemistry01 natural sciencesElectrochemical cellEngineeringRectificationNanofluidic diodesMultipore membranesMultifunctional electrical responseOhmic contactApplied PhysicsDiodepH-reversed rectificationIon current021001 nanoscience & nanotechnology0104 chemical sciencesNanoporeMembraneFISICA APLICADAPhysical Sciences0210 nano-technologyApplied Physics Letters
researchProduct

Modification of the sheet resistance under Ti/Al/Ni/Au Ohmic contacts on AlGaN/GaN heterostructures

2018

This paper reports on the modification of the sheet resistance under Ti/Al/Ni/Au Ohmic contacts on AlGaN/GaN heterostructures, studied by means of Transmission Line Model (TLM) structures, morphological and structural analyses, as well as computer simulations. In particular, the contacts exhibited an Ohmic behaviour after annealing at 800 degrees C, with a specific contact resistance rho(c) = (2.4 +/- 0.2) x 10(-5) Omega cm(2), which was associated to morphological and structural changes of both the metal layer and the interface. Interestingly, TLM analyses gave a value of the sheet resistance under the contact (R-SK = 26.1 +/- 5.0 Omega/rectangle) significantly lower than that measured out…

Materials scienceAnnealing (metallurgy)Algan gan02 engineering and technology01 natural sciencesMetal0103 physical sciencesAlGaN/GaN heterostructuresGeneral Materials ScienceComposite materialOhmic contactSheet resistanceOhmic contacts010302 applied physicsbusiness.industryMechanical EngineeringContact resistanceTransmission Line ModelHeterojunction021001 nanoscience & nanotechnologyCondensed Matter PhysicsSemiconductorMechanics of Materialsvisual_artvisual_art.visual_art_mediumTi/Al/Ni/Au0210 nano-technologybusiness
researchProduct

Charge transport mechanism in networks of armchair graphene nanoribbons

2020

In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature to enable novel graphene-based electronics. Successful synthesis of GNRs has triggered efforts to realize field-effect transistors (FETs) based on single ribbons. Despite great progress, reliable and reproducible fabrication of single-ribbon FETs is still a challenge that impedes applications and the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on a network of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with unprecedented conductivity. We show formati…

Materials scienceBand gap530 Physicslcsh:MedicineFOS: Physical sciences02 engineering and technology010402 general chemistry01 natural sciencesArticlelaw.inventionlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)lcsh:ScienceCondensed-matter physicsOhmic contactQuantum tunnellingMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGraphenelcsh:RTransistorCharge (physics)021001 nanoscience & nanotechnology530 PhysikMaterials science0104 chemical sciencesOptoelectronicslcsh:QCharge carrier0210 nano-technologybusinessGraphene nanoribbons
researchProduct

Direct assessment of p–n junctions in single GaN nanowires by Kelvin probe force microscopy

2016

Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrinkage of the built-in potential for NWs with small diameter due to surface band bending, in qualitative agreement with the measurements. The photovoltage of the NW/substrate contact is studied by analysing the response of NW segments with p- and n-type doping under illumination. Our results show that th…

Materials scienceElectrical junctionNanowireBioengineering02 engineering and technologyPhotovoltaic effect7. Clean energy01 natural sciencessymbols.namesakeOpticsDepletion region0103 physical sciencesGeneral Materials ScienceElectrical and Electronic EngineeringOhmic contactComputingMilieux_MISCELLANEOUS010302 applied physicsKelvin probe force microscope[PHYS]Physics [physics]Nanotecnologiabusiness.industryMechanical EngineeringFermi levelGeneral ChemistryCiència dels materials021001 nanoscience & nanotechnologyMechanics of MaterialssymbolsOptoelectronics0210 nano-technologybusinessVolta potential
researchProduct

Rapid nanocrystallization of soft-magnetic amorphous alloys using microwave induction heating

2009

The crystallization of Fe73Nb3Cu1Si16B7 alloy during microwave heating was investigated in situ using synchrotron radiation powder diffraction. The phase transformation comprises a primary nanocrystallization stage and a final microcrystallization step. We provide evidence for a strong enhancement of the transformation kinetics. Microwave heating occurs as a result of both ohmic and magnetic losses induced by eddy currents, which defines a volumetric microwave induction heating process. Nanocrystallization is completed within 5 s, while full crystallization is achieved in less than 10 s.

Materials scienceInduction heatingAmorphous metalMechanical EngineeringMetallurgyMetals and AlloysSynchrotron radiationCondensed Matter Physicslaw.inventionMechanics of MaterialslawEddy currentGeneral Materials ScienceCrystallizationComposite materialOhmic contactMicrowavePowder diffractionScripta Materialia
researchProduct

New prototypes for the isolation of the anodic chambers in microbial fuel cells

2016

This work has been focused on the assessment of new prototypes of MFC in which a more strict separation of the anode and cathode compartments is looked for, in order to attain strict anaerobic conditions in the anode chamber and hence, avoid lack of efficiency due to the prevalence of non-electrogenic competing microorganisms and to optimize composition of the anolyte and catholyte. A cylinder reactor with an inner chamber with graphite bars acting as anodes and the outer one with a stainless steel tube acting as cathode was used in three different configurations and results obtained during lifetests are compared in terms of electricity production, cathode oxygen consumption and anode COD d…

Materials scienceMicrobial fuel cellMicrobial fuel cell020209 energyGeneral Chemical EngineeringCompartimentos separadosEnergy Engineering and Power Technology02 engineering and technology010501 environmental sciencesDouble chamber01 natural sciencesCámara doblelaw.inventionIsolationlaw0202 electrical engineering electronic engineering information engineeringMiniaturizationChemical Engineering (all)GraphitePrototiposOhmic contact0105 earth and related environmental sciencesAislamientoOrganic ChemistrySeparated compartmentSettore ING-IND/27 - Chimica Industriale E TecnologicaPrototypeCathodeAnodeIngeniería QuímicaElectricity generationFuel TechnologyChemical engineeringDegradation (geology)Pila de combustible microbiana
researchProduct

Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides

2013

The thermo-optical dynamics of polymer loaded surface plasmon waveguide (PLSPPW) based devices photo-thermally excited in the nanosecond regime is investigated. We demonstrate thermo-absorption of PLSPPW modes mediated by the temperature-dependent ohmic losses of the metal and the thermally controlled field distribution of the plasmon mode within the metal. For a PLSPPW excited by sub-nanosecond long pulses, we find that the thermo-absorption process leads to modulation depths up to 50% and features an activation time around 2ns whereas the relaxation time is around 800ns, four-fold smaller than the cooling time of the metal film itself. Next, we observe the photo-thermal activation of PLSP…

Materials scienceOpticsbusiness.industryExcited stateSurface plasmonNanosecondThermal diffusivitybusinessOhmic contactWaveguide (optics)Atomic and Molecular Physics and OpticsPlasmonExcitation
researchProduct

Plano-concave microlenses with epsilon-near-zero surface-relief coatings for efficient shaping of nonparaxial optical beams

2017

Abstract Epsilon-near-zero (ENZ) materials, including artificial metamaterials, have been advanced to mold laser beams and antenna-mediated radiated waves. Here we propose an efficient method to control Ohmic losses inherent to natural ENZ materials by the assembly of subwavelength structures in a nonperiodic matrix constituting an ENZ metacoating. Implemented over plano-concave transparent substrates whose radius can be of only a few wavelengths, ENZ surface-relief elements demonstrate to adequately shape a plane wave into highly localized fields. Furthermore, our proposal provides an energy efficiency even higher than an ideally-lossless all-ENZ plano-concave lens. Our procedure is satisf…

Materials sciencePlane waveFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsMatrix (mathematics)Opticslaw0103 physical sciencesElectrical and Electronic EngineeringOhmic contactbusiness.industryZero (complex analysis)MetamaterialRadius021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsLens (optics)WavelengthOptoelectronics0210 nano-technologybusinessPhysics - OpticsOptics (physics.optics)Optics & Laser Technology
researchProduct