Search results for "Open Quantum System"
showing 10 items of 190 documents
Entanglement Induced by Tailored Environments
2009
Frozen Quantum Coherence
2015
We analyse under which dynamical conditions the coherence of an open quantum system is totally unaffected by noise. For a single qubit, specific measures of coherence are found to freeze under different conditions, with no general agreement between them. Conversely, for an N-qubit system with even N, we identify universal conditions in terms of initial states and local incoherent channels such that all bona fide distance-based coherence monotones are left invariant during the entire evolution. This finding also provides an insightful physical interpretation for the freezing phenomenon of quantum correlations beyond entanglement. We further obtain analytical results for distance-based measur…
Dissipative effects on a generation scheme of a W state in an array of coupled Josephson junctions
2011
The dynamics of an open quantum system, consisting of three superconducting qubits interacting with independent reservoirs, is investigated to elucidate the effects of the environment on a unitary generation scheme of W states (Migliore R et al 2006 Phys. Rev. B 74 104503). To this end a microscopic master equation is constructed and its exact resolution predicts the generation of a Werner-like state instead of the W state. A comparison between our model and a more intuitive phenomenological model is also considered, in order to find the limits of the latter approach in the case of structured reservoirs.
Hidden entanglement in the presence of random telegraph dephasing noise
2012
Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.
Spin-1/2 geometric phase driven by decohering quantum fields
2003
We calculate the geometric phase of a spin-1/2 system driven by a one and two mode quantum field subject to decoherence. Using the quantum jump approach, we show that the corrections to the phase in the no-jump trajectory are different when considering an adiabatic and non-adiabatic evolution. We discuss the implications of our results from both the fundamental as well as quantum computational perspective.
Control of quantum systems
1999
We propose a new control method for systems whose evolution is described by Schrödinger's equation (quantum dynamics). The goal of the control is to induce modifications of observable quantities — with possible effects at mesoscopic or macroscopic levels — by modifying the potential at the microscopic level. We illustrate the feasibility of the approach on a harmonic oscillator system.
Experimental recovery of quantum correlations in absence of system-environment back-action
2013
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative rele…
Dynamics of spatially indistinguishable particles and quantum entanglement protection
2020
We provide a general framework which allows one to obtain the dynamics of $N$ noninteracting spatially indistinguishable particles locally coupled to separated environments. The approach is universal, being valid for both bosons and fermions and for any type of system-environment interaction. It is then applied to study the dynamics of two identical qubits under paradigmatic Markovian noises, such as phase damping, depolarizing and amplitude damping. We find that spatial indistinguishability of identical qubits is a controllable intrinsic property of the system which protects quantum entanglement against detrimental noise.
The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics
2020
We know that in Hamiltonian systems a dynamic function f(q, p) develops in time according to
Simulating open quantum systems with trapped ions
2005
This paper focuses on the possibility of simulating the open system dynamics of a paradigmatic model, namely the damped harmonic oscillator, with single trapped ions. The key idea consists in using a controllable physical system, i.e. a single trapped ion interacting with an engineered reservoir, to simulate the dynamics of other open systems usually difficult to study. The exact dynamics of the damped harmonic oscillator under very general conditions is firstly derived. Some peculiar characteristic of the system’s dynamics are then presented. Finally a way to implement with trapped ion the specific quantum simulator of interest is discussed.