Search results for "Optical Devices"

showing 3 items of 33 documents

Performance of electro-optical plasmonic ring resonators at telecom wavelengths

2012

International audience; In this work we report on the characteristics of an electro-optical dielectric-loaded surface plasmon polariton waveguide ring resonator. By doping the dielectric host matrix with an electro-optical material and designing an appropriate set of planar electrodes, we measured a 16% relative change of transmission upon application of a controlled electric field. We have analyzed the temporal response of the device and conclude that electrostriction of the host matrix is playing a dominating role in the transmission response.

Waveguide (electromagnetism)Materials sciencePhysics::Optics02 engineering and technologyDielectric01 natural sciences010309 opticsCondensed Matter::Materials ScienceResonatorOpticsEXCITATION0103 physical sciencesINTERFEROMETERSMODULATIONPlasmon[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ElectrostrictionSURFACE-PLASMONbusiness.industrySurface plasmonOptical DevicesEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologySurface plasmon polaritonAtomic and Molecular Physics and OpticsEquipment Failure AnalysisWAVE-GUIDE COMPONENTSTelecommunicationsOptoelectronicsElectronics0210 nano-technologybusinessFILMLocalized surface plasmonOptics Express
researchProduct

Dielectric-loaded plasmonic waveguide-ring resonators

2009

International audience; Using near-field microscopy, the performance of dielectric-loaded plasmonic waveguide-ring resonators (WRRs) operating at telecom wavelengths is investigated for various waveguide-ring separations. It is demonstrated that compact ( footprint similar to 150 mu m(2)) and efficient ( extinction ratio similar to 13 dB) WRR-based filters can be realized using UV-lithography. The WRR wavelength responses measured and calculated using the effective-index method are found in good agreement. (c) 2009 Optical Society of America

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicPolymers[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsTransducersPhysics::Optics02 engineering and technologyDielectricSensitivity and Specificity01 natural sciences010309 opticsResonatorOptics0103 physical sciencesPOLARITON WAVES[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsTotal internal reflection[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Extinction ratiobusiness.industryPhotonic integrated circuitSurface plasmonCOMPONENTSOptical DevicesReproducibility of ResultsEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologyWAVELENGTHSAtomic and Molecular Physics and OpticsEquipment Failure AnalysisWavelength[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicComputer-Aided DesignOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsNear-field scanning optical microscope[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusiness
researchProduct

Birefringent porous silicon membranes for optical sensing

2012

In this work anisotropic porous silicon is investigated as a material for optical sensing. Birefringence and sensitivity of the anisotropic porous silicon membranes are thoroughly studied in the framework of Bruggeman model which is extended to incorporate the influence of environment effects, such as silicon oxidation. The membranes were also characterized optically demonstrating sensitivity as high as 1245 nm/RIU at 1500 nm. This experimental value only agrees with the theory when it takes into consideration the effect of silicon oxidation. Furthermore we demonstrate that oxidized porous silicon membranes have optical parameters with long term stability. Finally, we developed a new model …

inorganic chemicalsSiliconMaterials scienceSiliconTransducerschemistry.chemical_elementPorous siliconcomplex mixturesLight scatteringOpticsAnisotropyPhotonic crystalBirefringenceBirefringencebusiness.industrytechnology industry and agricultureOptical DevicesMembranes ArtificialEquipment Designequipment and suppliesAtomic and Molecular Physics and OpticsRefractometryMembranechemistrybusinessRefractive indexPorosity
researchProduct