Search results for "Optical and Magnetic Material"

showing 10 items of 4699 documents

Time-resolved pulsed OSL of ceramic YAP:Mn phosphors

2019

The paper deals with the results of comparative study on time-resolved pulsed optically stimulated luminescence (TR-OSL) response of ceramic YAP:Mn materials prepared by different methods. In parti...

010302 applied physicsMaterials scienceOptically stimulated luminescencebusiness.industryPhosphor02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsControl and Systems Engineeringvisual_art0103 physical sciencesThermoluminescent DosimetryMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumOptoelectronicsCeramicElectrical and Electronic Engineering0210 nano-technologybusinessIntegrated Ferroelectrics
researchProduct

Static and dynamic structure of $ZnWO_4$ nanoparticles

2011

Abstract Static and dynamic structure of ZnWO 4 nanoparticles, synthesized by co-precipitation technique, has been studied by temperature dependent x-ray absorption spectroscopy at the Zn K-edge and W L 3 -edge. Complementary experimental techniques, such as x-ray powder diffraction, Raman and photoluminescence spectroscopies, have been used to understand the variation of vibrational, optical, and structural properties of nanoparticles, compared to microcrystalline ZnWO 4 . Our results indicate that the structure of nanoparticles experiences strong relaxation leading to the significant distortions of the WO 6 and ZnO 6 octahedra, being responsible for the changes in optical and vibrational …

010302 applied physicsMaterials sciencePhotoluminescenceAbsorption spectroscopyExtended X-ray absorption fine structureAnalytical chemistryNanoparticle02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeMicrocrystalline0103 physical sciencesX-ray crystallographyMaterials ChemistryCeramics and Compositessymbolsddc:6600210 nano-technologyRaman spectroscopyPowder diffraction
researchProduct

Comparing the luminescence processes of YVO4:Eu and core-shell YVO4@YF3 nanocrystals with bulk-YVO4:Eu

2017

Abstract Comparative analysis of bulk, non-coated and core-shelled nanocrystalline YVO4:Eu was performed by means of time-resolved luminescence and VUV excitation luminescence spectroscopy techniques. Nanocrystalline YVO4:Eu samples – both as-prepared and YF3 core-shelled – have been synthesized by means of a microwave-assisted synthesis in ionic liquids, which allows to obtain 10–12 nm nanoparticles with high crystallinity. The results show noticeable differences between bulk and nanocrystalline YVO4:Eu in photoluminescence experimental data, which explains by influence of the nanocrystal surface. A YF3 core-shell layer around YVO4:Eu nanoparticles partially recovers the intensity of the E…

010302 applied physicsMaterials sciencePhotoluminescencePassivationAnalytical chemistryNanoparticle02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesNanocrystalline materialElectronic Optical and Magnetic MaterialsCrystallinityNanocrystal0103 physical sciencesElectrical and Electronic Engineering0210 nano-technologyLuminescenceSpectroscopyPhysica B: Condensed Matter
researchProduct

Rhodamine (B) photocatalysis under solar light on high crystalline ZnO films grown by home-made DC sputtering

2018

Abstract ZnO thin films were deposited by home-made DC sputtering of zinc target under mixed gases (Argon, Oxygen) plasma on glass substrates. Films were deposited by varying oxygen partial pressure (PO2) from 0.09 to 1.3 mbar in the deposition chamber, at a fixed substrate temperature of 100 °C. The samples were characterized by photoluminescence (PL), X-ray diffraction (XRD), optical transmissions (UV–vis), scanning electron microscopy (SEM) and electrical (Hall effect) measurements. The results indicate that by varying the oxygen pressure in the deposition chamber, the films show a precise and well defined photoluminescence emissions for each range of pressure covering almost the entire …

010302 applied physicsMaterials sciencePhotoluminescenceZnO thin films Sputtering Photoluminescence Rhodamine (B) Solar light PhotocatalysisScanning electron microscopeBand gapAnalytical chemistry02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistrySputtering0103 physical sciencesPhotocatalysisRhodamine BElectrical and Electronic EngineeringThin film0210 nano-technology
researchProduct

First principles simulations on migration paths of oxygen interstitials in magnesium aluminate spinel

2018

This study has been carried out within the framework of the EURO fusion Consortium and has been provided funding from the Euratom research and training program 2014–2018 under grant agreement No. 633053. The authors are indebted to A.I. Popov, A.C. Lushchik and R. Vila for stimulating discussions. Technical assistance from O. Lisovski is appreciated too. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Calculations have been performed using Marconi supercomputer system based in Italy at CINECA Supercomputing Centre.

010302 applied physicsMaterials sciencePhysicsdiffusionThermodynamicschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsRadiation defects01 natural sciencesOxygenElectronic Optical and Magnetic MaterialsOxygeninterstitial oxygenchemistry0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Magnesium-aluminium spinelDiffusion (business)0210 nano-technologyfirst principles calculationsphysica status solidi (b)
researchProduct

Optimization of physicochemical and optical properties of nanocrystalline TiO 2 deposited on porous silicon by metal-organic chemical vapor depositio…

2020

International audience; Titanium dioxide (TiO2) is very employed in solar cells due to its interesting physicochemical and optical properties allowing high device performances. Considering the extension of applications in nanotechnologies, nanocrystalline TiO2 is very promising for nanoscale components. In this work, nanocrystalline TiO2 thin films were successfully deposited on porous silicon (PSi) by metal organic chemical vapor deposition (MOCVD) technique at temperature of 550°C for different periods of times: 5, 10 and 15 min. The objective was to optimize the physicochemical and optical properties of the TiO2/PSi films dedicated for photovoltaic application. The structural, morphologi…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and Alloys02 engineering and technologyChemical vapor deposition021001 nanoscience & nanotechnologyPorous silicon01 natural sciences7. Clean energyNanocrystalline materialSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsMetalChemical engineeringvisual_art0103 physical sciencesvisual_art.visual_art_medium[INFO]Computer Science [cs]Metalorganic vapour phase epitaxy0210 nano-technology[CHIM.CHEM]Chemical Sciences/Cheminformatics
researchProduct

The interdependence of structural and electrical properties in TiO2/TiO/Ti periodic multilayers

2013

International audience; Multilayered structures with 14-50 nm periods composed of titanium and two different titanium oxides, TiO and TiO2, were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. The structure and composition of these periodic TiO2/TiO/Ti stacks were investigated by X-ray diffraction and transmission electronic microscopy techniques. Two crystalline phases, hexagonal close packed Ti and face centred cubic TiO, were identified in the metallic-rich sub-layers, whereas the oxygen-rich ones comprised a mixture of amorphous TiO2 and rutile phase. DC electrical resistivity rho measured for temperatures ranging from 300 to 500 K exhibited a meta…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and AlloysAnalytical chemistrychemistry.chemical_elementNanotechnology02 engineering and technologySputter deposition021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsAmorphous solidchemistryElectrical resistivity and conductivityHall effectRutile0103 physical sciencesCeramics and Composites[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologyHigh-resolution transmission electron microscopyTemperature coefficientTitanium
researchProduct

Variable-charge method applied to study coupled grain boundary migration in the presence of oxygen

2009

International audience; One of the important differences between simulation and experiments in grain boundary (GB)-dominated metallic structures is the lack of impurities such as oxygen in computational samples. A modified variable-charge method [Elsener A, Politano O, Derlet PM, Van Swygenhoven H. Modell Simul Mater Sci Eng 2008;16:025006] based on the Streitz and Mintmire approach [Streitz FH, Mintmire JW. Phys Rev B 1994;50:11996] is used to study coupled GB motion in an Al bicrystal with a [1 1 2] symmetrical tilt GB in the presence of substitutional O, and compared with the stick–slip process identified by Cahn and Mishin [Cahn JW, Mishin Y, Suzuki A. Acta Mater 2006;54:4953]. It is found…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and AlloysBoundary (topology)ThermodynamicsCharge (physics)02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsShear (sheet metal)Molecular dynamicsImpurityCritical resolved shear stress[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciencesCeramics and CompositesGrain boundary0210 nano-technology
researchProduct

Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation

2016

Abstract Aim of this study is to investigate experimentally the effect of magnetically induced cavitation applied for the purpose of nanoparticle dispersion in liquid metals. The oscillating magnetic force due to the azimuthal induction currents and the axial magnetic field excites power ultrasound in the sample. If the fields are sufficiently high then it is possible to achieve the acoustic cavitation threshold in liquid metals. Cavitation bubble collapses are known to create microscale jets with a potential to break nanoparticle agglomerates and disperse them. The samples are solidified under the contactless ultrasonic treatment and later analyzed by electron microscopy and energy-dispers…

010302 applied physicsMaterials sciencePolymers and Plasticsbusiness.industryPhysics::Medical PhysicsUltrasoundMetallurgyMetals and AlloysNanoparticle02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldPhysics::Fluid DynamicsAgglomerateCavitation0103 physical sciencesCeramics and CompositesUltrasonic sensorMagnesium alloyComposite material0210 nano-technologybusinessMicroscale chemistryActa Materialia
researchProduct

Continuous hydrothermal synthesis in supercritical conditions as a novel process for the elaboration of Y-doped BaZrO3

2021

Abstract The present work describes a novel process for the elaboration of a ceramic material. Y-doped barium zirconate, an electrolyte material for Protonic Ceramic Fuel cell, was synthesized by a continuous hydrothermal process in supercritical conditions (410 °C/30.0 MPa) using nitrate precursors and NaOH reactants. The use of supercritical water allowed the formation of particles of about 50 nm in diameter with a narrow size distribution. X-Ray Diffraction examination revealed that a major perovskite phase with few BaCO3 and YO(OH) impurities was obtained. BaCO3 is assumed to form due to faster kinetics than Y-doped BaZrO3 resulting in a Ba-deficient perovskite phase. The Ba-deficiency …

010302 applied physicsMaterials scienceProcess Chemistry and Technologychemistry.chemical_element02 engineering and technologyYttrium021001 nanoscience & nanotechnology01 natural sciencesHydrothermal circulationSupercritical fluidSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringProtonic ceramic fuel cellPhase (matter)visual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumHydrothermal synthesisCeramic0210 nano-technologyPerovskite (structure)Ceramics International
researchProduct