Search results for "Optical field"
showing 6 items of 46 documents
Counter-propagating frequency mixing with Terahertz waves in diamond
2013
Frequency conversion by means of Kerr nonlinearity is one of the most common and exploited nonlinear optical processes in the UV, visible, IR, and mid-IR spectral regions. Here we show that wave mixing of an optical field and a terahertz wave can be achieved in diamond, resulting in the frequency conversion of the terahertz radiation either by sum- or difference-frequency generation. In the latter case, we show that this process is phase matched and most efficient in a counterpropagating geometry.
Thermalization and condensation in an incoherently pumped passive optical cavity
2011
International audience; We study theoretically and numerically the condensation and the thermalization of classical optical waves in an incoherently pumped passive Kerr cavity. We show that the dynamics of the cavity exhibits a turbulent behavior that can be described by the wave turbulence theory. A mean-field kinetic equation is derived, which reveals that, in its high finesse regime, the cavity behaves essentially as a conservative Hamiltonian system. In particular, the intracavity turbulent field is shown to relax adiabatically toward a thermodynamic equilibrium state of energy equipartition. As a consequence of this effect of wave thermalization, the incoherent optical field undergoes …
Optical field molding within near-field coupled twinned nanobeam cavities
2011
Twinned high Q nanobeam cavities can be optically coupled while being placed in the optical near-field of each other. They form then a new optical system which supports discrete field maps addressable by wavelength selection.
Thermodynamic approach of supercontinuum generation in photonic crystal fiber
2009
We show that the spectral broadening process inherent to supercontinuum generation may be described as a thermalization process, which results from the natural irreversible evolution of the optical field towards a thermodynamic equilibrium state.
On chip shapeable optical tweezers
2013
International audience; Particles manipulation with optical forces is known as optical tweezing. While tweezing in free space with laser beams was established in the 1980s, integrating the optical tweezers on a chip is a challenging task. Recent experiments with plasmonic nanoantennas, microring resonators, and photonic crystal nanocavities have demonstrated optical trapping. However, the optical field of a tweezer made of a single microscopic resonator cannot be shaped. So far, this prevents from optically driven micromanipulations. Here we propose an alternative approach where the shape of the optical trap can be tuned by the wavelength in coupled nanobeam cavities. Using these shapeable …
Optical Field-Induced Mass Transport in Soft Materials
2013
Abstract The dependence of the surface relief formation in amorphous chalcogenide (As 2 S 3 and As-S-Se) and Disperse Red 1 dye grafted polyurethane polymer films on the polarization state of holographic recording light beams was studied. It is shown that the direction of lateral mass transport on the film surface is determined by the direction of light electric vector and photoinduced anisotropy in the film. We propose a photoinduced dielectropfhoretic model to explain the photoinduced mass transport in amorphous films. Model is based on the photoinduced softening of the matrix, formation of defects with enhanced or decreased polarizability, and their drift under the electrical field gradi…