Search results for "Optical microscope"
showing 10 items of 157 documents
Single molecule imaging using a highly confined optical field at a triangular aperture
2005
We demonstrate that scanning near-field optical microscopy based on a probe with a triangular aperture is capable of imaging single fluorescent molecules with an optical resolution of 30 nm. Numerical simulations agree well with experiment.
Scanning near-field optical microscopy (SNOM) of lithium niobate aperiodically poled during growth
2007
In the present work, aperiodically poled lithium niobate (APPLN) was grown, along the a-axis, by the off-centred Czochraski method. The domain formation has been triggered by rare earth doping, using in this case Er3+ and Yb3+ ions. The growth conditions were selected in order to obtain a modulated domain distribution. SNOM measurements have been performed with a Nanonics Imaging Ltd model MultiView 200 TM working in non-contact tapping mode.
Photonic effect study on polystyrene 3D-photonic crystals at near-field range: dependence on the wavelength and on the lattice parameter
2007
3D-photonic crystals (opals) based on polystyrene (PS) colloidal nanospheres are being characterized by scanning near-field optical microscopy (SNOM). These crystals offer a huge potential for controlling both the spontaneous emission of embedded light sources and the propagation of light itself.
Imaging of photonic nanopatterns by scanning near-field optical microscopy
2002
We define photonic nanopatterns of a sample as images recorded by scanning near-field optical microscopy with a locally excited electric dipole as a probe. This photonic nanopattern can be calculated by use of the Green’s dyadic technique. Here, we show that scanning near-field optical microscopy images of well-defined gold triangles taken with the tetrahedral tip as a probe show a close similarity to the photonic nanopattern of this nanostructure with an electric dipole at a distance of 15 nm to the sample and tilted 45° with respect to the scanning plane.
Multimodal nonlinear imaging of suspended carbon nanotubes using circular polarizations
2013
In this work, multimodal nonlinear microscopy of suspended CNTs using circular polarizations (CP) was reported. Significant variations in the SHG and THG signals of the CNTs between left hand circular polarization (LHCP) and right hand circular polarization (RHCP) were observed. The variations in the nonlinear signals can be associated to the unique properties of the CNTs such as chirality.
Controlling Light Confinement by Excitation of Localized Surface Plasmons
2007
Localized surface plasmons can be used to control near-field optical phenomena in the subwavelength range. Specifically, this chaper reviews recent results which show that localized surface plasmons can confine the optical intensity down to nanoscopic dimensions. The discussion first considers how a collection-mode near-field optical microscope can observe the squeezing of the plasmon field of metallic nanostructures deposited on a flat surface. Numerical simulations then provide illustrations of the confined fields associated with nanostructures which are feasible using current microfabrication techniques. Finally, we present arguments which explain how localized surface plasmons can deliv…
Mapping surface plasmon propagation by collection-mode near-field microscopy
2011
Surface plasmon propagation along striped Gold structures has been investigated by collection-mode near-field microscopy, leading to map the field intensity at the structure surface and to assess the system behavior at the nanoscale.
Near-field characterization of plasmon polariton propagation along periodically nano-structured metal thin films
2007
We operate a near-field optical microscope to investigate the properties of periodically nano-structured metal thin films designed to control at the micron scale the propagation or the excitation of surface plasmon polaritons.
All-optical and electro-optical active plasmonic telecom components
2011
Active plasmonics is an attractive emerging field in which the ability to control the surface plasmon polariton (SPP) propagation finds many applications such as realization of fully functional integrated photonic circuitry. We demonstrate both numerically and experimentally switching of the SPP transmission based on two different approaches namely the all-optical and electro-optical at telecom wavelengths. The plasmonic component consists of a compact and efficient SPP switch utilizing highly sensitive ring resonator which has high sensitivity to the refractive index changes. Fabrication was done via e-beam lithography utilizing advanced proximity corrections. The compenents were character…
Space-time features of THz emission from optical rectification in sub-wavelength areas
2011
We present our investigation on the THz space-time emission characteristic induced by the non-paraxial generation regime in highly localized THz generation via optical rectification on sub-wavelength areas.