Search results for "Optical physics"
showing 10 items of 35 documents
Nonlinear Hanle effect in Cs vapor under strong laser excitation
2002
We report results of a theoretical and experimental study of the ground state nonlinear Hanle effect under strong laser excitation. It is shown that besides the well-known zero-magnetic field suppression of absorption on F g = F→F e = F - 1 transitions caused by population trapping, an optical pumping induced enhanced absorption occurs on F g = F→F e = F + 1 transitions for small B-fields. The latter effect becomes more pronounced for high F values. The experiment with atomic vapor of Cs (D2 line, F g = 4) confirms an increase of the spectrally unresolved fluorescence yield at zero magnetic field and 600 mW/cm2 laser intensity by 9% or 42%, when excitation occurs with linearly or circularly…
Lifetimes and g-factors of the HFS states in H-like and Li-like bismuth
2018
The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, has successfully determined the ground state hyperfine (HFS) splittings in hydrogen-like ($^{209}\rm{Bi}^{82+}$) and lithium-like ($^{209}\rm{Bi}^{80+}$) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. Besides the transition wavelengths the time resolved detection of fluorescence photons following the excitation of the ions by a pulsed laser system also allows to extract lifetimes of the upper HFS levels and g-fac…
Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth
2017
We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…
Fibres Are Looking Up: Optical Fibre Transition Structures In Astrophotonics
2010
Recent developments in the astrophotonic applications of optical fibre taper transitions are discussed. For example, transitions between single multi-mode and multiple single-mode cores can help suppress the atmospheric OH emission that hampers ground-based IR astronomy.
Trianionic gold clusters
2001
Using Penning-trap experiments and a shell-correction method incorporating ellipsoidal shape deformations, we investigate the formation and stability patterns of trianionic gold clusters. Theory and ex- periment are in remarkable agreement concerning appearance sizes and electronic shell eects. In contrast to multiply cationic clusters, decay of the trianionic gold clusters occurs primarily via electron autodetach- ment and tunneling through a Coulomb barrier, rather than via ssion. PACS. 36.40.Wa Charged clusters { 36.40.Qv Stability and fragmentation of clusters { 36.40.Cg Electronic and magnetic properties of clusters
Mikroskops un tā lietošana
1927
The Peregrine soliton in nonlinear fibre optics
2010
International audience; The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system. It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrödinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions th…
Efficient three-step, two-color ionization of plutonium using a resonance enhanced 2-photon transition into an autoionizing state
2004
Resonance ionization mass spectrometry (RIMS) has proven to be a powerful method for isotope selective ultra-trace analysis of long-lived radioisotopes. For plutonium detection limits of $\rm 10^{6}$ to $\rm 10^{7}$ atoms have been achieved for various types of samples. So far a three-step, three-color laser excitation scheme was applied for efficient ionization. In this work, a two-photon transition from an excited state into a high-lying autoionizing state, will be presented, yielding a similar overall efficiency as the three-step, three-color ionization scheme. In this way, only two tunable lasers are needed, while the advantages of a three-step, three-color excitation (high selectivity,…
Diffractive optics for processing ultrashort light pulses
2011
In this work we combine, in principle, two disjoint optical fields, diffractive optics and ultrashort light radiation. This combination allows us to manipulate in a very unconventional manner femtosecond pulses and, on the other hand, to implement a set of novel applications. In our case we have focused our attention on material processing and biophotonics applications.
Plasma radiation spectra in the presence of static electric and high-frequency radiation fields
2004
Harmonics generation of high-frequency radiation in a plasma embedded in a constant electric field is investigated theoretically. It is shown that the electron directed motion due to the static electric field yields the appearance in the plasma emission spectrum of high-frequency radiation even harmonics. The conditions are established when the even harmonics generation is as effective as that of the odd ones. At variance with the odd harmonics, the even harmonics polarization plane is found to rotate with respect to that of the fundamental field. The basic dependencies concerning the rotation angle and the generation efficiency on the plasma and field parameters are established.