Search results for "Optimal Observable"
showing 4 items of 14 documents
"Table 12" of "Test of CP invariance in vector-boson fusion production of the Higgs boson in the H → ττ channel in proton–proton collisions at s=13Te…
2020
Post-fit Optimal Observable distributions in the low BDT score CR for the $\tau_{\mathrm{had}}\tau_{\mathrm{had}}$ analysis channel. ''Other bkg'' denotes all background contributions not listed explicitly in the legend. The size of the combined statistical, experimental, and theoretical uncertainties is given.
"Table 26" of "Test of CP invariance in vector-boson fusion production of the Higgs boson in the H → ττ channel in proton–proton collisions at s=13Te…
2020
Post-fit distribution of weighted event yields as a function of the Optimal Observable for all four SRs combined. The contributions of the different SRs are weighted by a factor of ln(1 + S/B), where S and B are the post-fit expected numbers of signal and background events in that region, respectively. The size of the combined statistical, experimental, and theoretical uncertainties is given.
Measurement of trilinear gauge couplings in e(+)e(-) collisions at 161 GeV and 172 GeV
1998
Trilinear gauge boson couplings are measured using data taken by DELPHI at 161 GeV and 172 GeV, Values for WWV couplings (V = Z,gamma) are determined from a study of the reactions e(+)e(-) --> W+W- and e(+)e(-) --> We nu, using differential distributions from the WW final state in which one W decays hadronically and the other leptonically, and total cross,section data from other channels, Limits are also derived on neutral ZV gamma couplings from an analysis of the reaction e(+)e(-) --> gamma + invisible particles. (C) 1998 Elsevier Science B.V.
Measurement of trilinear gauge boson couplings WWV, (V Z,gamma) in e(+)e(-) collisions at 189 GeV
2001
Measurements of the trilinear gauge boson couplings WWgamma and WWZ are presented using the data taken by DELPHI in 1998 at a centre-of-mass energy of 189 GeV and combined with DELPHI data at 183 GeV. Values are determined for Delta(g_1^Z) and Delta(kappa_gamma), the differences of the WWZ charge coupling and of the WWgamma dipole coupling from their Standard Model values, and for lambda_gamma, the WWgamma quadrupole coupling. A measurement of the magnetic dipole and electric quadrupole moment of the W is extracted from the results for Delta(kappa_gamma) and lambda_gamma. The study uses data from the final states jjlv, jjjj, lX, jjX and gammaX, where j represents a quark jet, l an identifie…