Search results for "Optimization"
showing 10 items of 2824 documents
Me, My Bot and His Other (Robot) Woman? Keeping Your Robot Satisfied in the Age of Artificial Emotion
2018
With a backdrop of action and science fiction movie horrors of the dystopian relationship between humans and robots, surprisingly to date-with the exception of ethical discussions-the relationship aspect of humans and sex robots has seemed relatively unproblematic. The attraction to sex robots perhaps is the promise of unproblematic affectionate and sexual interactions, without the need to consider the other&rsquo
Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
2021
AbstractSolving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise to direct the search for the most preferred trade-offs with preference information and learn about the problem. There are different interactive methods, and it is important to compare them and find the best-suited one for solving the problem in question. Comparisons with real decision makers are expensive, and artificial decision makers (ADMs) have been proposed to simulate humans in basic testing before involving real decision makers. Existing ADMs only consider one type of preference information. In this paper, we propose ADM-II, which is tailored to assess several …
Learning automata-based solutions to the optimal web polling problem modelled as a nonlinear fractional knapsack problem
2011
We consider the problem of polling web pages as a strategy for monitoring the world wide web. The problem consists of repeatedly polling a selection of web pages so that changes that occur over time are detected. In particular, we consider the case where we are constrained to poll a maximum number of web pages per unit of time, and this constraint is typically dictated by the governing communication bandwidth, and by the speed limitations associated with the processing. Since only a fraction of the web pages can be polled within a given unit of time, the issue at stake is one of determining which web pages are to be polled, and we attempt to do it in a manner that maximizes the number of ch…
Heuristics for the min–max arc crossing problem in graphs
2018
Abstract In this paper, we study the visualization of complex structures in the context of automatic graph drawing. Constructing geometric representations of combinatorial structures, such as networks or graphs, is a difficult task that requires an expert system. The automatic generation of drawings of graphs finds many applications from software engineering to social media. The objective of graph drawing expert systems is to generate layouts that are easy to read and understand. This main objective is achieved by solving several optimization problems. In this paper we focus on the most important one: reducing the number of arc crossings in the graph. This hard optimization problem has been…
DESDEO : An Open Framework for Interactive Multiobjective Optimization
2018
We introduce a framework for interactive multiobjective optimization methods called DESDEO released under an open source license. With the framework, we want to make interactive methods easily accessible to be applied in solving real-world problems. The framework follows an object-oriented software design paradigm, where functionalities have been divided to modular, self-contained components. The framework contains implementations of some interactive methods, but also components which can be utilized to implement more interactive methods and, thus, increase the applicability of the framework. To demonstrate how the framework can be used, we consider an example problem where the pollution of…
A Novel Intelligent Technique for Product Acceptance Process Optimization on the Basis of Misclassification Probability in the Case of Log-Location-S…
2019
In this paper, to determine the optimal parameters of the product acceptance process under parametric uncertainty of underlying models, a new intelligent technique for optimization of product acceptance process on the basis of misclassification probability is proposed. It allows one to take into account all possible situations that may occur when it is necessary to optimize the product acceptance process. The technique is based on the pivotal quantity averaging approach (PQAA) which allows one to eliminate the unknown parameters from the problem and to use available statistical information as completely as possible. It is conceptually simple and easy to use. One of the most important featur…
Intelligent Constructing Exact Tolerance Limits for Prediction of Future Outcomes Under Parametric Uncertainty
2021
The problem of constructing one-sided exact statistical tolerance limits on the kth order statistic in a future sample of m observations from a distribution of log-location-scale family on the basis of an observed sample from the same distribution is considered. The new technique proposed here emphasizes pivotal quantities relevant for obtaining tolerance factors and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. The exact tolerance limits on order statistics associated with sampling from underlying distributions can be found easily and quickly making tables, simulation, Monte Carlo estimated percen…
A New Intelligent Technique of Constructing Optimal Airline Seat Protection Levels for Multiple Nested Fare Classes of Single-Leg Flights
2019
A new, rigorous formulation of the optimization problem of airline seat protection levels for multiple nested fare classes is presented. A number of results useful for practical application are obtained. A numerical example is given.
Quantum clustering in non-spherical data distributions: Finding a suitable number of clusters
2017
Quantum Clustering (QC) provides an alternative approach to clustering algorithms, several of which are based on geometric relationships between data points. Instead, QC makes use of quantum mechanics concepts to find structures (clusters) in data sets by finding the minima of a quantum potential. The starting point of QC is a Parzen estimator with a fixed length scale, which significantly affects the final cluster allocation. This dependence on an adjustable parameter is common to other methods. We propose a framework to find suitable values of the length parameter σ by optimising twin measures of cluster separation and consistency for a given cluster number. This is an extension of the Se…
Search for a Minimal Set of Parameters by Assessing the Total Optimization Potential for a Dynamic Model of a Biochemical Network.
2017
Selecting an efficient small set of adjustable parameters to improve metabolic features of an organism is important for a reduction of implementation costs and risks of unpredicted side effects. In practice, to avoid the analysis of a huge combinatorial space for the possible sets of adjustable parameters, experience-, and intuition-based subsets of parameters are often chosen, possibly leaving some interesting counter-intuitive combinations of parameters unrevealed. The combinatorial scan of possible adjustable parameter combinations at the model optimization level is possible; however, the number of analyzed combinations is still limited. The total optimization potential (TOP) approach is…