Search results for "Optique"
showing 10 items of 101 documents
Voir et toucher. L’optique, l’haptique et le visuel chez Merleau-Ponty
2013
International audience
Fluorescent organometallic complexes : when the photovoltaic leads to theranostics
2013
The goal of my PhD thesis was to synthesize new molecules, which give access to fluorescentorganometallic complexes with interesting properties for photovoltaic and theranostic. In thisproject, several main points have been studied.The first part of this manuscript concerns the synthesis of new metallocene and metalloporphyrinsbasedorganometallic complexes to the design of solar cells. After a short introduction, wepresented the synthesis of titanium complexes and metalloporphyrins in the first chapter. Inparticular, we described the synthesis of model compounds and the difficulties encountered duringthe transition to porphyrin derivatives. However, in view of results obtained and opportuni…
Generic heuristics on GPU to superpixel segmentation and application to optical flow estimation
2020
Finding clusters in point clouds and matching graphs to graphs are recurrent tasks in computer science domain, data analysis, image processing, that are most often modeled as NP-hard optimization problems. With the development and accessibility of cheap multiprocessors, acceleration of the heuristic procedures for these tasks becomes possible and necessary. We propose parallel implantation on GPU (graphics processing unit) system for some generic algorithms applied here to image superpixel segmentation and image optical flow problem. The aim is to provide generic algorithms based on standard decentralized data structures to be easy to improve and customized on many optimization problems and…
Analyse locale des sensibilités des lectures angulaires, spectroscopiques et ellipsométriques de la Résonance des Plasmons de Surface en vue de la mi…
2006
The fluorescence labelling, used by the fluorescence biochips, is known to change the charge distribution of the labelled molecules and then modify their biological activity. Among label free biosensors, we choose an optical detection, such as spectroscopic ellipsometry and/or surface plasmon resonance (SPR) of the biolayers.These optical techniques are based on the measurement of both thickness and optical index of the adsorbed biolayer. An AFM statistical measurement of the thickness of functionalized lithographed microstructures has been performed in order to determine the thickness of the biolayers.We have shown that the spectroscopic reading of the SPR phase shift is 100 times more sen…
ELECTRON-FED OPTICAL ANTENNA
2019
Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that an optical antenna coupled to a tunnel junction can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the device radiates a broadband light spectrum which can be related to a thermal like spectrum. We propose a model based upon the spontaneous emission of hot ele…
Évènements extrêmes et turbulence optique
2010
National audience; Nous montrons l'impact de l'incohérence dans un système hamiltonien sur l'émergence d'événements extrêmes de types ondes scélérates, en analysant l'évolution à long terme du champ optique. Trois régimes sont identifiés: le premier (i) est caractérisé par des ondes persistantes, le second (ii) est marqué par des ondes intermittentes et le dernier (iii) par de rares ondes sporadiques.
Étude des propriétés optiques et spectroscopiques de nanorods dopés au lanthanide pour des applications de nanosondes en champ proche
2022
Lanthanide-doped nanoparticles constitute a versatile family of photoluminescent local nanoprobes. In this work, we study the photoluminescence of Eu3+-doped NaYF4 nanorods characterized by highly polarized spectra. We develop a full theoretical model and paraxial approximation for nanorod dipole emission. We measure the photoluminescence of individual nanorods by fluorescence confocal microscopy and determine some of their intrinsic optical properties. We also determine the nature (electric or magnetic) and orientations of dipoles moments of the optical transitions used for nanoprobing in the visible range.In addition to the full theoretical model and the paraxial approximation, Fourier mi…
Trapping and manipulation of colloidal objects using silicon photonic structures integrated into optofluidic chips
2016
Near-field optical forces arise from evanescent electromagnetic fields, such as in the near-field of photonic waveguides and nanocavities where light is highly confined. These contactless forces can be advantageously used to trap and manipulate micro- and nano-objects in solution. This thesis aims at studying these intriguing interactions and investigating their potential applications. The first chapter is an introduction to the fields of colloidal systems and optical trapping, more especially using near-field optical forces. The second chapter presents the experimental setup and the process used to fabricate optofluidic chips with microfluidic channels. The trapping potential experienced b…
Self-polarization of light in optical fibers
2015
The second performs the first experimental demonstration of the polarization domain walls which cancel the effects which degrade the intensity and spectral profile of a telecom signal during propagation. This phenomenon comes from non-linear coupling between the two orthogonal polarization modes of light propagating in a Kerr medium in normal dispersion regime, and causes a modulation in phase opposition of the two modes along the fiber. It is possible to lock two optical pulse trains complementary intensity so that the pulses do not suffer the effects of distortion occurring in the fiber in order to maintain the information to be transmitted. And a distortion-free propagation was achieved …
Rectifications optique et thermique générées à l'aide de jonctions tunnel planaires électromigrées
2017
The work described in this manuscrit consists in studying the optical rectification within plasmo-electronic devices. These ultra-compact optically adressed components with an ultra-fast time response induces a conversion of the incident field into a static current. The monolithically-integrated electronically optical antenna requires a detailed knowledge of nanoscale thermal and electrical transport mechanisms. This work also aims to discuss all thermal effects inherent in the optical excitation of these connected devices, in order to identify the different contributions in the generation of a photo-assisted current.