Search results for "Ordination"

showing 10 items of 1367 documents

Thermal- and photo-induced spin crossover in the 1D coordination polymer [Fe(4-tBupy)3][Au(CN)2]2 (4-tBupy = 4-tert-butylpyridine)

2021

Reaction of the unidentate pyridine ligand containing a bulky t-butyl substituent with Fe2+ and [Au(CN)2]− affords a new type of spin crossover (SCO) coordination polymer in the 1D compound [Fe(4-tBupy)3][Au(CN)2]2⋅0.5H2O (1), which is formed by chains of Fe(II) complexes linked through bridging [Au(CN)2]− with three terminal 4-tBupy and one monodentate [Au(CN)2]− ligands completing the octahedral coordination around Fe(II). Longer reaction times led to the minor products [Fe(4-tBupy)2][Au(CN)2]2 (2), which presents a 2D structure more similar to that found in the other SCO compounds based on [Au(CN)2]−, and the 1D compound [Fe(4-tBupy)2(MeOH)][Au(CN)2]2 (3), in which one of the three termi…

010302 applied physicsDenticityCoordination polymerSpin transitionSubstituentGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences3. Good healthchemistry.chemical_compoundCrystallographyOctahedronchemistrySpin crossoverExcited state0103 physical sciencesMoleculeFísica de l'estat sòlidCompostos de coordinació0210 nano-technologyMaterials
researchProduct

Atomic structure of manganese-doped yttrium orthoaluminate

2018

Abstract Using hybrid exchange-correlation functional within density functional theory we have performed first-principle total energy calculations of Mn-doped yttrium orthoaluminate (YAlO3). Its equilibrium atomic structure has been predicted through optimization of coordinates of all atoms using a supercell approach. In our research both Mn3+ and Mn2+ ions have been substituted for the host alumina atom at orthorhombic Pbnm unit cell of YAlO3. F-center has been implemented as charge-compensating defect in case, when Mn2+ dopant is under study. In this study we thoroughly analyze the atomic displacements in seven nearest to Mn ion coordination spheres. Insertion of isoelectronic substitutio…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceCoordination sphereDopantchemistry.chemical_element02 engineering and technologyYttrium021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectCrystallographychemistryOctahedron0103 physical sciencesAtomOrthorhombic crystal systemDensity functional theory0210 nano-technologyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

The Taming of Redox‐Labile Phosphidotitanocene Cations

2019

International audience; Tame d0 phosphidotitanocene cations stabilized with a pendant tertiary phosphane arm are reported. These compounds were obtained by one-electron oxidation of d1 precursors with [Cp2Fe][BPh4]. The electronic structure of these compounds was studied experimentally (EPR, UV/Vis, and NMR spectroscopy, X-ray diffraction analysis) and through DFT calculations. The theoretical analysis of the bonding situation by using the electron localization function (ELF) shows the presence of π-interactions between the phosphido ligand and Ti in the d0 complexes, whereas dπ–pπ repulsion prevents such interactions in the d1 complexes. In addition, CH–π interactions were observed in seve…

010402 general chemistry01 natural sciencesRedoxTransition metal phosphidesCatalysisFrustrated Lewis pairlaw.inventionchemistry.chemical_compoundFrustrated Lewis Pair (FLP)[CHIM.ANAL]Chemical Sciences/Analytical chemistrylaw[CHIM.COOR]Chemical Sciences/Coordination chemistryPhosphorus LigandsElectron paramagnetic resonanceDiphenylacetyleneComputingMilieux_MISCELLANEOUSTitanium[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryLigandOrganic Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryGeneral ChemistryNuclear magnetic resonance spectroscopyElectron localization function0104 chemical sciencesHomolysis[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryDensity Functional Theory (DFT)Crystallographychemistry[CHIM.CHEM]Chemical Sciences/CheminformaticsChemistry – A European Journal
researchProduct

Phosphasalen group IV metal complexes: synthesis, characterization and ring opening polymerization of lactide.

2020

International audience; We report the synthesis of a series of Zr and Ti complexes bearing phosphasalen which differs from salen by the incorporation of two P atoms in the ligand backbone. The reaction of phosphasalen proligands (1a-1c)H2 with Zr(CH2Ph)4 led to different products depending on the nature of the N,N-linker in the ligand. In case of ethylene-linked phosphasalen, octahedral Zr complex 2a formed as a single stereoisomer in trans geometry. With the phenylene linker, it was shown by dynamic NMR spectroscopy that complex 2b exists as a mixture of trans and cis-β isomers in solution, both enantiomers (Δ and Λ) of the cis-β isomer being in fast equilibrium with respect to the NMR tim…

010402 general chemistryLIGANDS SYNTHESIS01 natural sciencesRing-opening polymerizationCoordination complexInorganic ChemistryINDIUM COMPLEXESOctahedral molecular geometry[CHIM]Chemical SciencesSALALEN COMPLEXESCYCLIC ESTERSCOORDINATION CHEMISTRYZIRCONIUM COMPLEXES; COORDINATION CHEMISTRY; SALALEN COMPLEXES; LIGANDS SYNTHESIS; INDIUM COMPLEXES; SALEN LIGANDS; CYCLIC ESTERS; INITIATORS; CATALYSIS; ALUMINUMchemistry.chemical_classification010405 organic chemistryLigandCATALYSISCationic polymerizationNuclear magnetic resonance spectroscopyALUMINUM0104 chemical sciencesCrystallographychemistrySALEN LIGANDSAlkoxy groupINITIATORS[CHIM.OTHE]Chemical Sciences/OtherIsomerizationZIRCONIUM COMPLEXESDalton transactions (Cambridge, England : 2003)
researchProduct

Switching and redox isomerism in first-row transition metal complexes containing redox active Schiff base ligands.

2014

International audience; The reversible redox isomerisms in first row transition metal complexes of the type ML2 were studied. The six ML2 complexes (M = Mn(III) (), Fe(II) (), Co(III) (), Ni(II) (), Cu(II) () and Zn(II) ()) were synthesized with a redox active Schiff base ligand [2-(3,5-di-tert-butyl-2-hydroxyphenylamino)-4-chlorophenol] (H3L) presenting different oxidation states from -2 to 0 (L(2-), L(-) and L(0)). EPR spectra and magnetic susceptibility measurements indicate the presence of complexes of the type [Mn(III)(L(2-))(L(-))] () with S = 1/2, [Fe(II)(L(-))2] () with S = 2, [Co(III)(L(2-))(L(-))] () with S = 1/2, [Ni(II)(L(-))2] () with S = 1, [Cu(II)(L(-))2] () with S = 1/2 and …

010402 general chemistryLigands01 natural sciencesRedoxlaw.inventionInorganic Chemistrychemistry.chemical_compoundElectron transferTransition metalIsomerismlawCoordination ComplexesMetals HeavyElectron paramagnetic resonanceSchiff BasesValence (chemistry)Schiff base010405 organic chemistryLigand[CHIM.MATE]Chemical Sciences/Material chemistryTautomer0104 chemical sciences3. Good healthCrystallographychemistryOxidation-Reduction
researchProduct

First copper(I) ferrocenyltetraphosphine complexes: possible involvement in Sonogashira cross-coupling reaction ?

2008

Preparation and characterization of the first examples of copper(I) ferrocenylpolyphosphine complexes are reported. The molecular structure of complex {P,P′,P′′-[1,1′,2,2′-tetrakis(diphenylphosphino)-4,4′-di-tert-butylferrocene]iodocopper(I)} (1) was solved by X-ray diffraction studies, and its fluxional behavior in solution was investigated by VT-31P NMR; both revealed a net triligated coordination preference of the ferrocenyl tetraphosphine Fc(P)4tBu with copper. The tetradentate ligand is an active auxiliary in Sonogashira alkynylation; therefore the general question of copper as a competitive coordination partner in the Pd/Cu-catalyzed Sonogashira reaction was raised and discussed. Elec…

010405 organic chemistryArylOrganic Chemistry[ CHIM.COOR ] Chemical Sciences/Coordination chemistrySonogashira couplingchemistry.chemical_element010402 general chemistry01 natural sciencesMedicinal chemistryCopperCoupling reaction0104 chemical sciencesCatalysisInorganic Chemistrychemistry.chemical_compoundchemistryPhenylacetyleneMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSPalladium
researchProduct

Computational study of the spin-forbidden H 2 oxidative addition to 16-electron Fe(0) complexes

2003

International audience; The spin-forbidden oxidative addition of H2 to Fe(CO)4, Fe(PH3)4, Fe(dpe)2 and Fe(dmpe)2 [dpe = H2PCH2CH2PH2, dmpe = (CH3)2PCH2CH2P(CH3)2] has been investigated by density functional theory using a modified B3PW91 functional. All 16-electron fragments are found to adopt a spin triplet ground state. The H2 addition involves a spin crossover in the reagents region of configurational space, at a significantly higher energy relative to the triplet dissociation asymptote and, for the case of Fe(CO)4·H2, even higher than the singlet dissociation asymptote. After crossing to the singlet surface, the addition proceeds directly to the classical cis-dihydride product. Only for…

010405 organic chemistryChemistry010402 general chemistryPhotochemistry01 natural sciencesOxidative additionDissociation (chemistry)0104 chemical sciencesInorganic Chemistry[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrySpin crossoverMoleculePhysical chemistryDensity functional theory[CHIM.COOR]Chemical Sciences/Coordination chemistrySinglet stateDihydrogen complexGround state
researchProduct

Two bimetallic layered materials with “Cu4Fe3” defective cubane units: syntheses, structures and magnetic properties of {[CuII(tn)]2[FeII(CN)6]}3·[Na…

2005

Abstract Reactions of the [Fe III (CN) 6 ] 3− anion with the [Cu II (tn)] 2+ ion (tn = 1,3-diaminopropane) afford the compounds {[Cu II (tn)] 2 [Fe II (CN) 6 ]}3·[Na 3 Fe III (CN) 6 ]·12H 2 O (1) and {[Cu n (tn)] 2 [Fe II (CN) 6 ]}·KCl·5H 2 O (2). Despite the differences concerning their asymmetric units, both structures present strong similar features: in both structures, the Cu(II) ion presents a square-base pyramidal CuN 5 environment and each [Fe II (CN) 6 ] 4− anion is linked to six Cu(II) ions through its six N atoms leading to infinite [Cu II (tn)] 2 [Fe II (CN) 6 ] layers which can be viewed as 2-D layered arrangement generated by the defective cubane units Cu 4 Fe 3 involving Fe-CN…

010405 organic chemistryChemistryCoordination polymerMechanical EngineeringInorganic chemistryMetals and AlloysCrystal structure010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsParamagnetismchemistry.chemical_compoundCrystallographyTransition metalMechanics of MaterialsCubaneMaterials ChemistryMoleculeAntiferromagnetismBimetallic stripSynthetic Metals
researchProduct

Spin crossover (SCO) iron(II) coordination polymer chain: Synthesis, structural and magnetic characterizations of [Fe(abpt)2(μ-M(CN)4)] (M=PtII and N…

2013

Abstract New iron(II) coordination polymeric neutral chain of formula [Fe(abpt) 2 (μ-M(CN) 4 )], with M = Pt II ( 1 ), Ni II ( 2 ) and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, have been synthesized and characterized by infrared spectroscopy, X-ray diffraction and magnetic measurements. The two compounds are isostructural as deduced from a Rietveld analysis of X-ray powder diffraction data of 2 simulated from the single crystal structure of 1 . The crystal packing of 1 is formed by regular chains running along the crystallographic [−1 0 1] direction where the planar [Pt(CN) 4 ] 2− anion acts as a μ 2 -bridging ligand via two nitrogen atoms of two different trans cyano groups, whi…

010405 organic chemistryChemistryCoordination polymerRietveld refinementInorganic chemistryBridging ligand010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographySpin crossoverMaterials Chemistry[CHIM.CRIS]Chemical Sciences/CristallographyPhysical and Theoretical ChemistryIsostructuralSingle crystalPowder diffraction
researchProduct

Electrochemical, Spectroelectrochemical, and Structural Studies of Mono- and Diphosphorylated Zinc Porphyrins and Their Self-Assemblies

2019

International audience; Three series of porphyrins containing a Zn(II) central metal ion and zero, one or two phosphoryl groups at the meso-positions of the macrocycle were characterized as to their electrochemical, spectroscopic and structural properties in non-aqueous media. The investigated compounds are represented as 5,15-bis(4'-R-phenyl)porphyrinatozinc, 10-(diethoxyphosphoryl)-5,15-bis(4'-R-phenyl)porphyrinatozinc and 5,15-bis(diethoxyphosphoryl)-10,20-bis(4'-R-phenyl)porphyrinatozinc, where R = OMe, Me, H or CN. Linear-free energy relationships are observed between the measured redox potentials at room temperature and the electronic nature of the substituents at the 5 and 15 meso-ph…

010405 organic chemistryChemistryInorganic chemistrychemistry.chemical_elementZinc010402 general chemistryElectrochemistry01 natural sciences0104 chemical sciencesInorganic ChemistryMetal[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryvisual_artvisual_art.visual_art_medium[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistry
researchProduct