Search results for "Organic Compounds"

showing 10 items of 271 documents

Study of Mass Oxygen Transfer in a Biotrickling Filter for Air Pollution Control

2012

Biotrickling filtration is a potential and cost effective alternative for the treatment of volatile organic compound (VOC) emissions in air, so it is necessary to deepen into the key aspects of design and operation for the optimization of this technology. One of these factors is the oxygen mass transfer of the process. This study would facilitate the selection of the packing material and the mathematical modelling and simulation of bioreactors. Four plastic packing materials with a different specific surface area have been evaluated in terms of oxygen mass transfer. For the tested range of superficial liquid velocities, data show a relationship between the kLa and the superficial liquid vel…

0106 biological sciencesAir pollutionchemistry.chemical_elementBiotrickling filter010501 environmental sciencesmedicine.disease_cause01 natural sciencesOxygenlaw.inventionFilter (large eddy simulation)law010608 biotechnologySpecific surface areaMass transferBioreactormedicineMass transferVolatile organic compoundVolatile organic compoundsEngineering(all)Filtration0105 earth and related environmental scienceschemistry.chemical_classificationEnvironmental engineeringGeneral MedicineOxygenchemistryChemical engineering13. Climate actionMedi ambient DegradacióProcedia Engineering
researchProduct

To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles

2017

Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. …

0106 biological sciencesAvian clutch sizePhysiologyOvipositionlcsh:MedicinePathogenesisPathology and Laboratory Medicine01 natural sciencesLoggerhead sea turtlelaw.inventionlawReproductive PhysiologyMedicine and Health SciencesBiomechanicsTurtle (robot)lcsh:ScienceHarpacticoidaMusculoskeletal SystemMultidisciplinarybiologyOrganic CompoundsPlanktonTurtlesCrustaceansChemistryVertebratesHost-Pathogen InteractionsPhysical SciencesLegsAnatomyClutchesResearch ArticleArthropoda010603 evolutionary biologyCopepodsHost-Parasite InteractionsCopepodaSea WaterAnimalsSymbiosisHatchlingSwimmingEthanolBiological Locomotion010604 marine biology & hydrobiologylcsh:RLimbs (Anatomy)Organic ChemistryOrganismsChemical CompoundsBiology and Life SciencesReptilesbiology.organism_classificationInvertebratesFisheryBaleenTestudinesAlcoholsAmniotesEarth SciencesBiological dispersallcsh:QHydrologyhuman activitiesPLoS ONE
researchProduct

Gibberellic acid in Citrus spp. flowering and fruiting: A systematic review

2019

[EN] Background In Citrus spp., gibberellic acid (GA) has been proposed to improve different processes related to crop cycle and yield. Accordingly, many studies have been published about how GA affects flowering and fruiting. Nevertheless, some such evidence is contradictory and the use of GA applications by farmers are still confusing and lack the expected results. Purpose This review aims to collate, present, analyze and synthesize the most relevant empirical evidence to answer the following questions: (i) how does gibberellic acid act on flowering and fruiting of citrus trees?; (ii) why is all this knowledge sometimes not correctly used by farmers to solve yield problems relating to flo…

0106 biological sciencesCitrusLeavesPlant Science01 natural sciencesBiochemistrychemistry.chemical_compoundDatabase and Informatics MethodsPlant Growth RegulatorsPlant HormonesDatabase SearchingMultidisciplinaryPlant BiochemistryOrganic CompoundsPlant AnatomyQREukaryota04 agricultural and veterinary sciencesPlantsCrop cycleHorticultureChemistryPhysical SciencesMedicineGibberellinCitrus × sinensisResearch ArticleScienceBOTANICACarbohydratesFlowersBiologyResearch and Analysis MethodsOrangesFruitsFruit setAbscissionGibberellic acidOrganic ChemistryOrganismsChemical CompoundsBiology and Life SciencesHormonesGibberellinschemistryFruit040103 agronomy & agriculture0401 agriculture forestry and fisheries010606 plant biology & botanyField conditionsPLoS ONE
researchProduct

Biotrickling filter modeling for styrene abatement. Part 1: Model development, calibration and validation on an industrial scale

2017

Abstract A three-phase dynamic mathematical model based on mass balances describing the main processes in biotrickling filtration: convection, mass transfer, diffusion, and biodegradation was calibrated and validated for the simulation of an industrial styrene-degrading biotrickling filter. The model considered the key features of the industrial operation of biotrickling filters: variable conditions of loading and intermittent irrigation. These features were included in the model switching from the mathematical description of periods with and without irrigation. Model equations were based on the mass balances describing the main processes in biotrickling filtration: convection, mass transfe…

0106 biological sciencesConvectionEngineeringEnvironmental EngineeringHealth Toxicology and MutagenesiseducationBiotrickling filter010501 environmental sciencesResidence time (fluid dynamics)01 natural scienceslaw.invention:Enginyeria química::Química del medi ambient::Química atmosfèrica [Àrees temàtiques de la UPC]Filter (large eddy simulation)Bioreactorslaw010608 biotechnologyMass transferEnvironmental ChemistryGases - PurificationVolatile organic compoundDiffusion (business)FiltrationStyrene0105 earth and related environmental scienceschemistry.chemical_classificationgeographyAir PollutantsVolatile Organic Compoundsgeography.geographical_feature_categorybusiness.industryPublic Health Environmental and Occupational HealthEnvironmental engineeringGeneral MedicineGeneral ChemistryPilot unitModels TheoreticalVolatile organic compoundInletPollutionGasos - DepuracióBiodegradation EnvironmentalchemistryCalibrationMathematical modelingBiological air treatmentbusinessFiltration
researchProduct

Removal of acetone from air emissions by biotrickling filters: providing solutions from laboratory to full-scale

2018

A full-scale biotrickling filter (BTF) treating acetone air emissions of wood-coating activities showed difficulties to achieve outlet concentrations lower than 125 mg C m-3, especially for high inlet concentrations and oscillating emissions. To solve this problem, a laboratory investigation on acetone removal was carried out simulating typical industrial conditions: discontinuous and variable inlet concentrations and intermittent spraying. The results were evaluated in terms of removal efficiency and outlet gas emission pattern. Industrial emissions and operational protocols were simulated: inlet load up to 70 g C m-3 h-1 during 2 cycles of 4 h per day and intermittent trickling of 15 min …

0106 biological sciencesEnvironmental EngineeringAlkalinity010501 environmental sciences01 natural sciencesAcetonechemistry.chemical_compoundBioreactorsTechnology Transfer010608 biotechnologyAcetoneVolatile organic compoundVehicle Emissions0105 earth and related environmental scienceschemistry.chemical_classificationPollutantAir PollutantsVolatile Organic Compoundsgeographygeography.geographical_feature_categoryEquipment DesignGeneral MedicinePulp and paper industryInletFilter (aquarium)Air FilterschemistryBiofilterEnvironmental scienceLaboratoriesFugitive emissionsFiltrationJournal of Environmental Science and Health, Part A
researchProduct

Advanced methods of plant disease detection. A review

2014

International audience; Plant diseases are responsible for major economic losses in the agricultural industry worldwide. Monitoring plant health and detecting pathogen early are essential to reduce disease spread and facilitate effective management practices. DNA-based and serological methods now provide essential tools for accurate plant disease diagnosis, in addition to the traditional visual scouting for symptoms. Although DNA-based and serological methods have revolutionized plant disease detection, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic diffusion. They need at least 1–2 days for sample harvest, processing, and analysis. Here, we d…

0106 biological sciencesEnvironmental Engineering[SDV]Life Sciences [q-bio]DiseaseBiology01 natural sciences03 medical and health sciencesCommercial kitsVolatile organic compoundsSpectroscopyPlant disease030304 developmental biology2. Zero hunger0303 health sciencesbusiness.industryDNA-based methods Immunological assays Spectroscopy Biophotonics Plant disease Remote sensing Volatile organic compounds Commercial kitsEffective managementExtremely HelpfulRemote sensingPlant diseaseCrop protectionBiotechnologyRisk analysis (engineering)DNA-based methodsImmunological assaysBiophotonicsbusinessAgronomy and Crop Science010606 plant biology & botany
researchProduct

Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems

2019

Insects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels. Here, we synthesize advances in understanding of insect foraging behavior in complex habitats by comparing trophic levels in specialist host-parasitoid-hyperparasitoid systems. We argue that resources may become less apparent to foraging insects when they are member of higher trophic …

0106 biological sciencesForage (honey bee)Food ChainInsectaForagingBiology010603 evolutionary biology01 natural sciencesCuePredationFood chainVolatile Organic CompoundLife ScienceAnimalsHerbivoryLaboratory of EntomologyEcology Evolution Behavior and SystematicsTrophic levelHerbivoreAppetitive BehaviorVolatile Organic CompoundsEcologyHost (biology)AnimalfungiFarm Systems Ecology GroupPlantPlantsPE&RCLaboratorium voor Entomologie010602 entomologySettore AGR/11 - Entomologia Generale E ApplicataHabitatInsect ScienceEPSCuesCurrent Opinion in Insect Science
researchProduct

Dimorphism in inflorescence scent of dioecious wild grapevine

2016

Abstract Wild grapevine ( Vitis vinifera subsp. sylvestris ) is the dioecious ancestral form of grapevine, from which the domesticated cultivars have derived ( V. vinifera subsp. vinifera ). Little is known about the floral scent compounds of wild grapevine that is considered as being partly insect pollinated. The knowledge of volatiles released by male and female inflorescence may contribute to the understanding of the pollination biology of this endangered taxon. Inflorescence scents of male and female individuals were collected by dynamic headspace and analysed by thermal desorption-GC/MS. A total of 17 compounds of C5-branched chain alcohols, aliphatics, aromatics, and terpenoids were i…

0106 biological sciencesHalictidaePollinationmedia_common.quotation_subjectInsectVitaceae010603 evolutionary biology01 natural sciencesBiochemistryPollinatorvolatile organic compoundsBotanyPollinationEcology Evolution Behavior and Systematicsmedia_commonVitis vinifera subspecies sylvestrisbiologyfungifood and beveragesbiology.organism_classificationSexual dimorphismVitaceaeInflorescencepollination Vitaceae Vitis vinifera subspecies sylvestris volatile organic compoundsSettore BIO/03 - Botanica Ambientale E ApplicataLonghorn beetle010606 plant biology & botany
researchProduct

Dynamic Mathematical Modelling of the Removal of Hydrophilic VOCs by Biotrickling Filters

2015

A mathematical model for the simulation of the removal of hydrophilic compounds using biotrickling filtration was developed. The model takes into account that biotrickling filters operate by using an intermittent spraying pattern. During spraying periods, a mobile liquid phase was considered, while during non-spraying periods, a stagnant liquid phase was considered. The model was calibrated and validated with data from laboratory- and industrial-scale biotrickling filters. The laboratory experiments exhibited peaks of pollutants in the outlet of the biotrickling filter during spraying periods, while during non-spraying periods, near complete removal of the pollutant was achieved. The gaseou…

0106 biological sciencesHealth Toxicology and Mutagenesisbiotrickling filtrationlcsh:MedicineLiquid phase010501 environmental sciences01 natural sciencesArticlelaw.inventionBioreactorslaw010608 biotechnologyvolatile organic compoundsparasitic diseasesmathematical modellingFiltration0105 earth and related environmental sciencesPollutantlcsh:RPublic Health Environmental and Occupational HealthEnvironmental engineeringQuímicaModels TheoreticalCarbon6. Clean waterVolumetric flow rateFilter (aquarium)13. Climate actionEnvironmental scienceair pollution controlFiltrationInternational Journal of Environmental Research and Public Health
researchProduct

Floral scent in Iris planifolia (Iridaceae) suggests food reward

2018

Iris species can adopt different pollination strategies to attract their pollinators, generalized shelter-mimicking, specialized deceptive sexual-mimicking or food-rewarding. As attractive stimuli, Iris flowers may use their colours, large-size, symmetry, and volatile organic compounds (VOCs). However, relatively few studies in- vestigated Iris floral olfactory cues in the context of plant-visitor/pollinator interactions. In the present study we combined the identification of the floral volatiles of the nectariferous I. planifolia with insects visiting its flowers to gather data on its biology. Floral volatiles were collected in the natural environment by dynamic headspace and analysed by g…

0106 biological sciencesHoney beeInsectaPollinationIris Plantmedia_common.quotation_subjectHover flieContext (language use)Plant ScienceInsectFlowersHorticultureBiologyAnisoles01 natural sciencesBiochemistryGas Chromatography-Mass SpectrometryIridaceaeHoney BeesPollinatorBotanyAnimalsDynamic headspacePollinationMolecular BiologyIris planifoliamedia_commonVolatile Organic CompoundsAromatic compound010405 organic chemistryfungifood and beveragesGeneral MedicineSettore CHIM/06 - Chimica OrganicaBees0104 chemical sciencesIridaceaeBumble beeItalyFloral scentSettore BIO/03 - Botanica Ambientale E ApplicataIris planifoliaGC-MS010606 plant biology & botany
researchProduct