Search results for "Organic solar cells"
showing 5 items of 15 documents
Diphenylmethanofullerene (DPM): a new and efficient acceptor in bulk heterojunction solar cells
2005
Donor-acceptor “double-cable” polythiophene with tunable acceptor content
2004
Donor/acceptor heterojunction organic solar cells
2017
Organic solar cells (OSCs) have made very good improvements in recent years, reaching power conversion efficiencies above 10% [1]. This have been achieved through chemical synthesis of new organic materials with improved properties and also by new and more or less complex structures such as donor/acceptor (D/A) or bulk heterojunction OSCs. Here we report the results of initial development of OSCs based on the simple D/A heterojunction [2]. Copper phtalocyanine (CuPc) is used as donor organic material, whereas perylenetetracarboxylic dianhydride (PTCDA) and fullerene (C60) as acceptor organic materials. Moreover bathocuproine (BCP) is used as exciton blocking layer. Devices are fabricated by…
Synthesis of oligomers and polymers doped with porphyrins for solar energy conversion
2017
The aim of this thesis was to elaborate new electron donor materials for organic solarcells. This emerging photovoltaic technology is rapidly expanding, and has yet already reached the limit for its large-scale commercialization. The low manufacturing cost of organic photovoltaic devices make then competitive face to well-established inorganic technologies. Their biggest advantage is their weight and their mechanical properties which make them flexible. They should play a key role in future as a complement to classic solar cells, with their use in specific applications. We developed polymers by using different chomophores, well-known for their interesting photophysical properties: the porph…
The Relation between Photoconductivity Threshold and Open-Circuit Voltage in Organic Solar Cells
2022
Financial support provided by Scientific Research Project for Students and Young Researchers No. SJZ/2020/08 implemented at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².