Search results for "P-supersoluble"

showing 3 items of 3 documents

A note on a result of Guo and Isaacs about p-supersolubility of finite groups

2016

In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to . We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing such that , if is S-semipermutable in for all normal subgroups H of P with , then either G is p-supersoluble or else . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups.

Discrete mathematicsFinite groupCoprime integersP-supersoluble groupGeneral MathematicsS-semipermutable subgroup010102 general mathematicsSylow theoremsGrups Teoria deOrder (ring theory)01 natural sciencesPrime (order theory)CombinatoricsGlobal informationLocally finite group0103 physical sciences010307 mathematical physicsFinite group0101 mathematicsMATEMATICA APLICADAMatemàticaMathematicsArchiv der Mathematik
researchProduct

On the supersoluble hypercentre of a finite group

2016

[EN] We give some sufficient conditions for a normal p-subgroup P of a finite group G to have every G-chief factor below it cyclic. The S-permutability of some p-subgroups of O^p(G)plays an important role. Some known results can be reproved and some others appear as corollaries of our main theorems.

Discrete mathematicsFinite groupP-supersoluble groupGeneral MathematicsS-semipermutable subgroup010102 general mathematicsGrups Teoria de01 natural sciencesMathematics::Group Theory0103 physical sciences010307 mathematical physicsFinite group0101 mathematicsMATEMATICA APLICADAMatemàticaMathematicsMonatshefte für Mathematik
researchProduct

Z-permutable subgroups of finite groups

2016

Let Z be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called Z-permutable if H permutes with all members of Z. The main goal of this paper is to study the embedding of the Z-permutable subgroups and the influence of Z-permutability on the group structure.

P-soluble groupP-supersolubleGrups Teoria deFinite groupMATEMATICA APLICADAMatemàticaSubnormal subgroupZ-permutable subgroup
researchProduct