Search results for "P53"

showing 10 items of 303 documents

Killing of p53-deficient hepatoma cells by parvovirus H-1 and chemotherapeutics requires promyelocytic leukemia protein

2008

To evaluate the synergistic targeting and killing of human hepatocellular carcinoma (HCC) cells lacking p53 by the oncolytic autonomous parvovirus (PV) H-1 and chemotherapeutic agents and its dependence on functional promyelocytic leukemia protein (PML).The role of p53 and PML in regulating cytotoxicity and gene transfer mediated by wild-type (wt) PV H-1 were explored in two pairs of isogenic human hepatoma cell lines with different p53 status. Furthermore, H-1 PV infection was combined with cytostatic drug treatment.While the HCC cells with different p53 status studied were all susceptible to H-1 PV-induced apoptosis, the cytotoxicity of H-1 PV was more pronounced in p53-negative than in p…

H-1 parvovirusLiver CancerH-1 parvovirusCarcinoma HepatocellularParvovirus H-1virusesAntineoplastic AgentsApoptosisPromyelocytic Leukemia ProteinPromyelocytic leukemia proteinDrug TherapyCell Line TumorHumansNuclear proteinCytotoxicityMembrane Potential MitochondrialbiologyParvovirusTumor Suppressor ProteinsLiver NeoplasmsGastroenterologyvirus diseasesNuclear ProteinsGeneral Medicinebiology.organism_classificationCombined Modality Therapydigestive system diseasesOncolytic virusApoptosisCancer researchbiology.proteinFluorouracilCisplatinTumor Suppressor Protein p53Transcription FactorsWorld Journal of Gastroenterology
researchProduct

HDAC inhibitors target oncogenic BRAF and p53 in melanoma cells and promote a switch from pro-survival autophagy to apoptosis

HDAC inhibitors BRAF p53 melanomaSettore BIO/10 - Biochimica
researchProduct

Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells

2014

Osteosarcoma is a highly metastatic tumor affecting adolescents, for which there is no second-line chemotherapy. As suggested for most tumors, its capability to overgrow is probably driven by cancer stem cells (CSCs), and finding new targets to kill CSCs may be critical for improving patient survival. TP53 is the most frequently mutated tumor suppressor gene in cancers and mutant p53 protein (mutp53) can acquire gain of function (GOF) strongly contributing to malignancy. Studies thus far have not shown p53-GOF in osteosarcoma. Here, we investigated TP53 gene status/role in 3AB-OS cells-a highly aggressive CSC line previously selected from human osteosarcoma MG63 cells-to evaluate its involv…

HistologyTumor suppressor genePhysiologyEndocrinology Diabetes and MetabolismApoptosisIn situ hybridizationBiologyTNF-Related Apoptosis-Inducing LigandCell MovementCancer stem cellCell Line TumorSettore BIO/10 - BiochimicaBiomarkers TumormedicineHumansNeoplasm Invasiveness3AB-OS cells CSCs Cancer cell dedifferentiation Cancer stem cells FISH Fluorescent in situ hybridization GOF Gain of function Human osteosarcoma MMPs Matrix metalloproteinases Mutant p53 Mutant p53 gain of function Mutp53 OS OsteosarcomaClonogenic assayTumor Stem Cell AssayCell ProliferationMembrane Potential MitochondrialOsteosarcomaCancerReceptors Death DomainCell DedifferentiationCell cyclemedicine.diseaseMolecular biologyAmino Acid SubstitutionProto-Oncogene Proteins c-bcl-2Gene Knockdown TechniquesMutationNeoplastic Stem CellsCancer researchOsteosarcomaEctopic expressionTumor Suppressor Protein p53Bone
researchProduct

MYC Activates Stem-like Cell Potential in Hepatocarcinoma by a p53-Dependent Mechanism

2014

Activation of c-MYC is an oncogenic hallmark of many cancers including liver cancer, and is associated with a variety of adverse prognostic characteristics. Despite a causative role during malignant transformation and progression in hepatocarcinogenesis, consequences of c-MYC activation for the biology of hepatic cancer stem cells (CSCs) are undefined. Here, distinct levels of c-MYC over-expression were established by using two dose-dependent tetracycline inducible systems in 4 hepatoma cell lines with different p53 mutational status. The CSCs were evaluated using side-population approach as well as standard in vitro and in vivo assays. Functional repression of p53 was achieved by lentivira…

Homeobox protein NANOGCancer ResearchCarcinoma HepatocellularCarcinogenesisMice SCIDBiologymedicine.disease_causeArticleMalignant transformationProto-Oncogene Proteins c-mycSide populationMice Inbred NODCancer stem cellmedicineAnimalsHumansLiver NeoplasmsHep G2 Cellsmedicine.diseaseTumor BurdenTransplantationPhenotypeOncologyImmunologyNeoplastic Stem CellsCancer researchTumor Suppressor Protein p53Liver cancerCarcinogenesisReprogrammingNeoplasm TransplantationCancer Research
researchProduct

Cytotoxicity of the bisphenolic honokiol from Magnolia officinalis against multiple drug-resistant tumor cells as determined by pharmacogenomics and …

2014

A main problem in oncology is the development of drug-resistance. Some plant-derived lignans are established in cancer therapy, e.g. the semisynthetic epipodophyllotoxins etoposide and teniposide. Their activity is, unfortunately, hampered by the ATP-binding cassette (ABC) efflux transporter, P-glycoprotein. Here, we investigated the bisphenolic honokiol derived from Magnolia officinalis. P-glycoprotein-overexpressing CEM/ADR5000 cells were not cross-resistant to honokiol, but MDA-MB-231 BRCP cells transfected with another ABC-transporter, BCRP, revealed 3-fold resistance. Further drug resistance mechanisms analyzed study was the tumor suppressor TP53 and the epidermal growth factor recepto…

HonokiolATP Binding Cassette Transporter Subfamily BPharmaceutical ScienceBiologyPharmacologyLignanschemistry.chemical_compoundGefitinibCell Line TumorDrug DiscoverymedicineATP Binding Cassette Transporter Subfamily G Member 2HumansEpidermal growth factor receptorCytotoxicityPI3K/AKT/mTOR pathwayOligonucleotide Array Sequence AnalysisPharmacologyBiphenyl CompoundsTransfectionbiology.organism_classificationAntineoplastic Agents PhytogenicDrug Resistance MultipleNeoplasm ProteinsErbB ReceptorsMolecular Docking SimulationMagnolia officinalisComplementary and alternative medicinechemistryDrug Resistance NeoplasmMagnoliaPharmacogeneticsbiology.proteinMolecular MedicineATP-Binding Cassette TransportersErlotinibTumor Suppressor Protein p53Transcriptomemedicine.drugSignal TransductionPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Novel 4-(3-phenylpropionamido), 4-(2-phenoxyacetamido) and 4-(cinnamamido) substituted benzamides bearing the pyrazole or indazole nucleus: synthesis…

2019

Based on some common structural features of known compounds interfering with p53 pathways and our previously synthesized benzamides, we synthesized new ethyl 5-(4-substituted benzamido)-1-phenyl-1H-pyrazole-4-carboxylates 26a-c, ethyl 5-(4-substituted benzamido)-1-(pyridin-2-yl)-1H-pyrazole-4-carboxylates 27a-c and N-(1H-indazol-6-yl)-4-substituted benzamides 31a,b bearing in the 4 position of the benzamido moiety the 2-phenylpropanamido or 2-phenoxyacetamido or cinnamamido groups. A preliminary test to evaluate the antiproliferative activity against human lung carcinoma H292 cells highlighted how compound 26c showed the best activity. This last was therefore selected for further studies wi…

IndazolesStereochemistryAntineoplastic AgentsApoptosisTRAIL-receptorPyrazole01 natural sciencesBiochemistrychemistry.chemical_compoundDownregulation and upregulationCell Line Tumor2-(3-phenylpropanamido)benzamideDrug DiscoverymedicineHumansMoietyMolecular BiologyCell ProliferationBiological evaluationP53Indazole010405 organic chemistryDrug Discovery3003 Pharmaceutical Science2-cinnamamidobenzamideOrganic ChemistryApoptosi2-(2-phenoxyacetamido)benzamide0104 chemical sciences010404 medicinal & biomolecular chemistrymedicine.anatomical_structureProto-Oncogene Proteins c-bcl-2Mechanism of actionchemistryApoptosisBenzamidesPyrazolesDrug Screening Assays Antitumormedicine.symptomNucleusBioorganic Chemistry
researchProduct

Geldanamycin and its derivatives as Hsp90 inhibitors

2012

The Hsp90 molecule, one of the most abundant heat shock proteins in mammalian cells, maintains homeostasis and prevents stress-induced cellular damage. Hsp90 is expressed under normal conditions at a level of about 1-2 Percent of total proteins, while its expression increases 2-10 fold in cancer cells. The two main constitutively expressed isoforms of Hsp90 are known as Hsp90-alpha and Hsp90-beta, and their upregulation is associated with tumor progression, invasion and formation of metastases, as well as development of drug resistance. The Hsp90 is a key target for many newly established, potent anticancer agents containing Hsp90 N-terminal ATP binding inhibitors, such as geldanamycin, and…

IndolesLactams MacrocyclicCyclin-Dependent KinaseAntineoplastic AgentsTanespimycinBenzoquinoneModels BiologicalAntineoplastic Agentchemistry.chemical_compoundDownregulation and upregulationTransforming Growth Factor betaCyclin-dependent kinaseHeat shock proteinBenzoquinonespolycyclic compoundsAnimalsHumansHSP90 Heat-Shock ProteinsbiologyAnimalTriazolesGeldanamycinHsp90Cyclin-Dependent KinasesProto-Oncogene Proteins c-rafHSP90 Heat-Shock Proteinsrc-Family KinaseschemistryTumor progressionMutationCancer cellbiology.proteinCancer researchMacrolidesMacrolideTriazoleTumor Suppressor Protein p53Animals; Antineoplastic Agents; Benzoquinones; Cyclin-Dependent Kinases; HSP90 Heat-Shock Proteins; Humans; Lactams Macrocyclic; Macrolides; Models Biological; Mutation; Novobiocin; Proto-Oncogene Proteins c-raf; Transforming Growth Factor beta; Triazoles; Tumor Suppressor Protein p53; src-Family KinasesNovobiocinHumanFrontiers in Bioscience
researchProduct

Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: the investigation of p53-MDM2 interaction and its inhibition by …

2010

The mdm2 oncogene product, MDM2, is an ubiquitin protein ligase that inhibits the transcriptional activity of the tumor suppressor p53 and promotes its degradation. About 50% of all human cancers present mutations or deletions in the TP53 gene. In the remaining half of all human neoplasias that express the wild-type protein, aberrations of p53 regula- tors, such as MDM2, account for p53 inhibition. For this reason, designing small-molecule inhibitors of the p53-MDM2 protein-protein interaction is a promising strategy for the treatment of cancers retaining wild-type p53. The development of inhibitors has been challenging. Although many small-molecule MDM2 inhibitors have shown potent in vitr…

IndolesTumor suppressor geneAntineoplastic AgentsMolecular Dynamics SimulationBioinformaticsBiochemistryGene productNeoplasmsDrug DiscoverymedicineHumansImidazolinesMolecular Modeling New Drugs for Anti-Cancer Therapy p53-MDM2 InteractionPharmacologyBenzodiazepinonesbiologyOncogeneOrganic ChemistryCancerProto-Oncogene Proteins c-mdm2medicine.diseaseSettore CHIM/08 - Chimica FarmaceuticaSmall moleculeUbiquitin ligaseOxindolesProtein Structure TertiaryDrug Designbiology.proteinCancer researchMolecular MedicineMdm2PharmacophoreTumor Suppressor Protein p53Current medicinal chemistry
researchProduct

Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis

2018

International audience; The p53 protein is a key tumor suppressor in mammals. In response to various forms of genotoxic stress p53 stimulates expression of genes whose products induce cell cycle arrest and/or apoptosis. An E3-ubiquitin ligase, Mdm2 (mouse-double-minute 2) and its human ortholog Hdm2, physically interact with the amino-terminus of p53 to mediate its ubiquitin-mediated degradation via the proteasome. Thus, pharmacological inhibition of the p53-Mdm2 interaction leads to overall stabilization of p53 and stimulation of its anti-tumorigenic activity. In this study we characterize the biological effects of a novel class of non-genotoxic isatin Schiff and Mannich base derivatives (…

Isatin0301 basic medicineProgrammed cell deathCell cycle checkpointAntineoplastic AgentsApoptosis[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyPiperazinesHistonesMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineNutlinCell Line TumorProto-Oncogene ProteinsAnimalsHumansMolecular Biologychemistry.chemical_classificationDNA ligaseIsatinImidazolesISMBDsProto-Oncogene Proteins c-mdm2Cell BiologyNutlinp53-activating moleculesCell biology030104 developmental biologychemistryProteasomeApoptosis030220 oncology & carcinogenesisbiology.proteinMdm2PumaTumor Suppressor Protein p53Apoptosis Regulatory Proteinsautomated microscopy system OperettaResearch PaperDevelopmental BiologyCell Cycle
researchProduct

p53 mutations are common in human papillomavirus type 38-positive non-melanoma skin cancers

2004

Copyright © 2003 Elsevier Ireland Ltd. All rights reserved.

Keratinocytesp53Human papillomavirusCancer ResearchE6 proteinSkin NeoplasmsNon-melanoma-skin cancerImmunoblottingmedicine.disease_causePolymerase Chain ReactionmedicineAnimalsHuman papillomavirusCodonPapillomaviridaeGeneCells CulturedE6integumentary systemReverse Transcriptase Polymerase Chain Reactionbusiness.industryDNAExonsCervical cellsFibroblastsGenes p53Coculture TechniquesRatsRetroviridaeOncologyMutationCancer researchCarcinogenesisbusinessNon melanomaCancer Letters
researchProduct