Search results for "PDEs"

showing 10 items of 505 documents

Radon–Nikodym Property and Area Formula for Banach Homogeneous Group Targets

2013

We prove a Rademacher-type theorem for Lipschitz mappings from a subset of a Carnot group to a Banach homogeneous group, equipped with a suitably weakened Radon-Nikodym property. We provide a metric area formula that applies to these mappings and more generally to all almost everywhere metrically differentiable Lipschitz mappings defined on a Carnot group. peerReviewed

Discrete mathematicsMathematics::Functional AnalysisProperty (philosophy)General Mathematicsmetric area formulata111Mathematics::Analysis of PDEsCarnot groupBanach homogeneous groupsalmost everywhere differentiabilityRadon-Nikodym propertyLipschitz continuityRadon–Nikodym theoremBanach homogeneous groups; metric area formula; almost everywhere differentiability; Radon-Nikodym propertyMetric (mathematics)Homogeneous groupMathematics::Metric GeometryAlmost everywhereDifferentiable functionMathematics
researchProduct

Shrinking and boundedly complete Schauder frames in Fréchet spaces

2014

We study Schauder frames in Fréchet spaces and their duals, as well as perturbation results. We define shrinking and boundedly complete Schauder frames on a locally convex space, study the duality of these two concepts and their relation with the reflexivity of the space. We characterize when an unconditional Schauder frame is shrinking or boundedly complete in terms of properties of the space. Several examples of concrete Schauder frames in function spaces are also presented.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsShrinkingReflexivitySchauder basisFunction space(LB)-spacesApplied MathematicsMathematics::Analysis of PDEsConvex setMathematics::General TopologyFréchet spacesSchauder basisAtomic decompositionSchauder fixed point theoremSchauder frameLocally convex spacesLocally convex topological vector spaceBoundedly completeDual polyhedronAtomic decompositionMATEMATICA APLICADAAnalysisMathematics
researchProduct

A weak comparison principle for solutions of very degenerate elliptic equations

2012

We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u\in K\), where \(K\subset \mathbb{R }^N\) is a Borel set containing the origin.

Discrete mathematicsPure mathematicsApplied MathematicsDegenerate energy levelsWeak comparison principleMathematics::Analysis of PDEs35B51 35J70 35D30 49K20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicavery degenerate elliptic equationsFOS: MathematicsPoint (geometry)Nabla symbolBorel setDivergence (statistics)Analysis of PDEs (math.AP)MathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

The p-Laplacian with respect to measures

2013

We introduce a definition for the $p$-Laplace operator on positive and finite Borel measures that satisfy an Adams-type embedding condition.

Discrete mathematicsPure mathematicsApplied Mathematicsta111Mathematics::Algebraic Topology35J92 35P30 35D99 35B65Mathematics - Analysis of PDEsAnalysis on fractalsp-LaplacianFOS: MathematicsEmbeddingLaplace operatorAnalysisMathematicsAnalysis of PDEs (math.AP)Journal of mathematical analysis and applications
researchProduct

Geometric Properties of Planar BV -Extension Domains

2009

We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.

Discrete mathematicsQuasiconformal mappingMathematics::Analysis of PDEsGeometric propertySobolev spaceQuasiconvex functionExtension domains; Sobolev spaces; Functions with bounded variationPlanarSobolev spacesFunctions with bounded variationBounded functionSimply connected spaceInvariant (mathematics)Extension domainsMathematics
researchProduct

Extensions and Imbeddings

1998

AbstractWe establish a connection between the Sobolev imbedding theorem and the extendability of Sobolev functions. As applications we give geometric criteria for extendability and give a result on the dependence of the extension property on the exponentp.

Discrete mathematicsSobolev spacePure mathematicsMathematics::Functional AnalysisProperty (philosophy)Mathematics::Analysis of PDEsExtension (predicate logic)AnalysisConnection (mathematics)Sobolev inequalityMathematicsJournal of Functional Analysis
researchProduct

Weighted norm inequalities in a bounded domain by the sparse domination method

2019

AbstractWe prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the sharp maximal function. By establishing a local-to-global result in a bounded domain satisfying a Boman chain condition, we show a two-weight p-Poincaré inequality in such domains. As an application we show that certain nonnegative supersolutions of the p-Laplace equation and distance weights are p-admissible in a bounded domain, in the sense that they support versions of the p-Poincaré inequality.

Discrete mathematicsosittaisdifferentiaaliyhtälötInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsPoincaré inequalityharmoninen analyysi01 natural sciences35A23 (Primary) 42B25 42B37 (Secondary)Harmonic analysis010104 statistics & probabilitysymbols.namesakeMathematics - Analysis of PDEsNorm (mathematics)Bounded functionFOS: MathematicssymbolsMaximal function0101 mathematicsepäyhtälötAnalysis of PDEs (math.AP)Mathematicsmedia_common
researchProduct

Generalized dimension distortion under planar Sobolev homeomorphisms

2009

We prove essentially sharp dimension distortion estimates for planar Sobolev-Orlicz homeomorphisms.

Distortion (mathematics)Sobolev spaceMathematics::Functional AnalysisMathematics::Dynamical SystemsPlanarDimension (vector space)Applied MathematicsGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsMathematics::General TopologyMathematicsProceedings of the American Mathematical Society
researchProduct

Homeomorphisms of Finite Distortion

2013

In this chapter we establish the optimal regularity of the inverse mapping in higher dimensions and optimal Sobolev regularity for composites. Moreover, we establish optimal moduli of continuity for mappings in our classes and we discuss orientation preservation and approximation of Sobolev homeomorphisms.

Distortion (mathematics)Sobolev spaceOrientation (vector space)Quasiconformal mappingPure mathematicsComposition operatorMathematics::Analysis of PDEsInverseCoarea formulaMathematicsModuli
researchProduct

A RADIATION CONDITION FOR UNIQUENESS IN A WAVE PROPAGATION PROBLEM FOR 2-D OPEN WAVEGUIDES

2009

We study the uniqueness of solutions of Helmholtz equation for a problem that concerns wave propagation in waveguides. The classical radiation condition does not apply to our problem because the inhomogeneity of the index of refraction extends to infinity in one direction. Also, because of the presence of a waveguide, some waves propagate in one direction with different propagation constants and without decaying in amplitude. Our main result provides an explicit condition for uniqueness which takes into account the physically significant components, corresponding to guided and non-guided waves; this condition reduces to the classical Sommerfeld-Rellich condition in the relevant cases. Final…

Electromagnetic fieldAsymptotic analysisHelmholtz equationWave propagationGeneral Mathematicsmedia_common.quotation_subject78A40 35J05 78A50 35A05Mathematical analysisGeneral Engineeringelectromagnetic fields • wave propagation • Helmholtz equation • optical waveguides • uniqueness of solutions • radiation conditionInfinitylaw.inventionAmplitudeMathematics - Analysis of PDEslawFOS: Mathematicswave propagation; Helmholtz equation; optical waveguides; radiation condition; uniqueness theoremsUniquenessWaveguidemedia_commonMathematicsAnalysis of PDEs (math.AP)
researchProduct