Search results for "PDEs"

showing 10 items of 505 documents

Quasilinear Dirichlet Problems with Degenerated p-Laplacian and Convection Term

2021

The paper develops a sub-supersolution approach for quasilinear elliptic equations driven by degenerated p-Laplacian and containing a convection term. The presence of the degenerated operator forces a substantial change to the functional setting of previous works. The existence and location of solutions through a sub-supersolution is established. The abstract result is applied to find nontrivial, nonnegative and bounded solutions.

Convectionsub-supersolutionGeneral MathematicsOperator (physics)quasilinear elliptic problemlcsh:MathematicsMathematical analysisMathematics::Analysis of PDEsnonnegative solutionlcsh:QA1-939Dirichlet distributionTerm (time)symbols.namesakedegenereted p-LaplacianSettore MAT/05 - Analisi MatematicaBounded functionComputer Science (miscellaneous)p-Laplaciansymbolsconvection termEngineering (miscellaneous)MathematicsMathematics
researchProduct

Convex functions on Carnot Groups

2007

We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.

Convex analysisPure mathematicsCarnot groupsubelliptic equations.49L25Mathematics::Complex VariablesGeneral MathematicsMathematical analysissubelliptic equationsMathematics::Analysis of PDEsHorizontal convexityviscosity convexity35J70Convexitysymbols.namesakeCarnot groupsHomogeneous35J67Convex optimizationsymbolsPoint (geometry)Carnot cycleConvex function22E30Mathematics
researchProduct

Monotonicity and enclosure methods for the p-Laplace equation

2018

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

Convex hull35R30 (Primary) 35J92 (Secondary)EnclosurePerturbation (astronomy)Monotonic function01 natural sciencesConstructiveMathematics - Analysis of PDEsEnclosure methodFOS: Mathematics0101 mathematicsMathematicsInclusion detectionMonotonicity methodLaplace's equationmonotonicity methodApplied Mathematics010102 general mathematicsMathematical analysista111inclusion detection010101 applied mathematicsNonlinear systemMonotone polygonp-Laplace equationAnalysis of PDEs (math.AP)enclosure method
researchProduct

Enclosure method for the p-Laplace equation

2014

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

Convex hullGeneralization35R30 (Primary) 35J92 (Secondary)EnclosureMathematics::Classical Analysis and ODEsInverseMonotonic function01 natural sciencesTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsLaplace's equationMathematics::Functional AnalysisCalderón problemApplied Mathematics010102 general mathematicsMathematical analysisComputer Science Applications010101 applied mathematicsNonlinear systemSignal ProcessingJumpp-Laplace equationenclosure methodAnalysis of PDEs (math.AP)
researchProduct

Numerical Study of the semiclassical limit of the Davey-Stewartson II equations

2014

We present the first detailed numerical study of the semiclassical limit of the Davey–Stewartson II equations both for the focusing and the defocusing variant. We concentrate on rapidly decreasing initial data with a single hump. The formal limit of these equations for vanishing semiclassical parameter , the semiclassical equations, is numerically integrated up to the formation of a shock. The use of parallelized algorithms allows one to determine the critical time tc and the critical solution for these 2 + 1-dimensional shocks. It is shown that the solutions generically break in isolated points similarly to the case of the 1 + 1-dimensional cubic nonlinear Schrodinger equation, i.e., cubic…

Critical timeOne-dimensional spaceGeneral Physics and AstronomySemiclassical physicsFOS: Physical sciences01 natural sciences010305 fluids & plasmassymbols.namesakeMathematics - Analysis of PDEsSquare root0103 physical sciencesFOS: Mathematics0101 mathematicsNonlinear Schrödinger equationScalingNonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsMathematicsNonlinear Sciences - Exactly Solvable and Integrable SystemsApplied Mathematics010102 general mathematicsMathematical analysisStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Norm (mathematics)symbolsGravitational singularityExactly Solvable and Integrable Systems (nlin.SI)Analysis of PDEs (math.AP)
researchProduct

Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux

2016

We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks, such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic. Constraints are defined based on data collected from non-local in space and/or in time observations of the flow. We propose a theoretical analysis and discretization framework that permits to include different data acquisition strategies; a numerical comparison is provided. Nonlocal constraint allows to model, e.g., the irrational behavior (" panic ") near the exit observed in dense crowds and the capacity drop at tollbooth in vehicular traffic. Existence …

Crowd dynamicsMathematical optimizationFixed point argumentsDiscretizationGeneral MathematicsScalar (mathematics)Crowd dynamics; Finite volume approximation; Nonlocal point constraint; Scalar conservation law; Vehicular traffics; Well-posedness; Mathematics (all); Applied Mathematics01 natural sciencesMSC : 35L65 90B20 65M12 76M12NONonlocal point constraintCrowdsData acquisitionMathematics (all)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]DoorsUniqueness[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalar conservation lawMathematicsConservation lawVehicular trafficsFinite volume methodApplied Mathematics010102 general mathematics[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]010101 applied mathematicsWell-posednessFinite volume schemeFinite volume approximationConvergence of approximations[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Journal de Mathématiques Pures et Appliquées
researchProduct

High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex

2013

Abstract We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 103–105, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 104–105. We also investi…

D'Alembert's paradoxGeneral Computer SciencePrandtl numberMathematics::Analysis of PDEsFOS: Physical sciencesPhysics::Fluid Dynamicssymbols.namesakeMathematics - Analysis of PDEsHagen–Poiseuille flow from the Navier–Stokes equationsFOS: MathematicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical analysisGeneral EngineeringFluid Dynamics (physics.flu-dyn)Reynolds numberPhysics - Fluid DynamicsMathematical Physics (math-ph)Non-dimensionalization and scaling of the Navier–Stokes equationsBoundary layersymbolsTurbulent Prandtl numberReynolds-averaged Navier–Stokes equationsBoundary layer Unsteady separation Navier Stokes solutions Prandtl’s equation High Reynolds number flows.Analysis of PDEs (math.AP)
researchProduct

Lower semicontinuity of weak supersolutions to the porous medium equation

2013

Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that nonnegative weak supersolutions become lower semicontinuous after redefinition on a set of measure zero. This shows that weak supersolutions belong to a class of supersolutions defined by a comparison principle.

Degenerate diffusion35K55 31C45Applied MathematicsGeneral MathematicsMathematical analysista111Mathematics::Analysis of PDEscomparison principlelower semicontinuitysupersolutionsMathematics - Analysis of PDEsporous medium equationFOS: MathematicsPorous mediumdegenerate diffusionSign (mathematics)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Boundary behavior of quasi-regular maps and the isodiametric profile

2001

We study obstructions for a quasi-regular mapping f : M → N f:M\rightarrow N of finite degree between Riemannian manifolds to blow up on or collapse on a non-trivial part of the boundary of M M .

Degree (graph theory)Mathematical analysisMathematics::Analysis of PDEsBoundary (topology)Collapse (topology)GeometryGeometry and TopologyMathematics::Differential GeometryMathematics::Geometric TopologyMathematics::Symplectic GeometryBoundary behavior.Quasi-regular mappingsMathematics
researchProduct

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct