Search results for "PDFS"

showing 10 items of 13 documents

Can we fit nuclear PDFs with the high-x CLAS data?

2020

AbstractNuclear parton distribution functions (nuclear PDFs) are non-perturbative objects that encode the partonic behaviour of bound nucleons. To avoid potential higher-twist contributions, the data probing the high-x end of nuclear PDFs are sometimes left out from the global extractions despite their potential to constrain the fit parameters. In the present work we focus on the kinematic corner covered by the new high-x data measured by the CLAS/JLab collaboration. By using the Hessian re-weighting technique, we are able to quantitatively test the compatibility of these data with globally analyzed nuclear PDFs and explore the expected impact on the valence-quark distributions at high x. W…

Hessian matrixParticle physicsPhysics and Astronomy (miscellaneous)EMC effectNuclear TheoryFOS: Physical sciencesPartonlcsh:Astrophysicshiukkasfysiikka01 natural sciences114 Physical sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentEngineering (miscellaneous)Physics010308 nuclear & particles physicsddc:530530 Physiknuclear parton distribution functions (nuclear PDFs)High Energy Physics - PhenomenologyDistribution functionsymbolslcsh:QC770-798Nucleonydinfysiikka
researchProduct

An update on nuclear PDFs at the LHeC

2017

The prospects for a measurement of nuclear parton distribution functions (PDFs) at the Large Hadron--Electron Collider are discussed in the light of recent progress made in the front of global analysis of nuclear PDFs.

High Energy Physics::PhenomenologyNuclear TheoryFOS: Physical sciencesNuclear parton distribution functionsRecent progress Inelastic scatteringPhysics::Data Analysis; Statistics and Probability114 Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)nuclear PDFsHigh Energy Physics::ExperimentDistribution functions Global analysisNuclear Experiment
researchProduct

Probing the small- x nuclear gluon distributions with isolated photons at forward rapidities in p+Pb collisions at the LHC

2014

Inclusive direct photon production in p+Pb collisions at the LHC is studied within the NLO perturbative QCD. Our aim is to quantify the dominant $x$ regions probed at different rapidities and to identify the best conditions for testing the nuclear gluon parton distribution functions (nPDFs) at small $x$. A comparison to the inclusive pion production reveals that from these two processes the photons carry more sensitivity to the small-$x$ partons and that this sensitivity can be further increased by imposing an isolation cut for the photon events. The details of the isolation criteria, however, seem to make only a small difference to the studied $x$ sensitivity and have practically no effect…

Particle physicsNuclear and High Energy PhysicsPhotonmedia_common.quotation_subjectFRAGMENTATION FUNCTIONSeducationFOS: Physical sciencesPREDICTIONSPartonPROTONAsymmetry114 Physical sciencesPionHigh Energy Physics - Phenomenology (hep-ph)PERTURBATIVE QCDSCATTERINGHadronic CollidersNuclear Experimentmedia_commonPhysicsBOSON PRODUCTIONPROMPT PHOTONLarge Hadron Colliderta114QUARKPerturbative QCDHeavy Ion PhenomenologyGluonHigh Energy Physics - PhenomenologyDistribution functionPARTON DISTRIBUTIONSHigh Energy Physics::ExperimentPDFSJHEP
researchProduct

The EPPS16 nuclear PDFs

2017

We report on EPPS16 - the first analysis of NLO nuclear PDFs where LHC p-Pb data (Z, W, dijets) have been directly used as a constraint. In comparison to our previous fit EPS09, also data from neutrino-nucleus deeply-inelastic scattering and pion-nucleus Drell-Yan process are now included. Much of the theory framework has also been updated from EPS09, including a consistent treatment of heavy quarks in deeply-inelastic scattering. However, the most notable change is that we no longer assume flavour-blind nuclear modifications for valence and sea quarks. This significantly reduces the theoretical bias. All the analysed data are well reproduced and the analysis thereby supports the validity o…

Drell-Yan processHeavy-quarkHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyElementary particlesFOS: Physical sciencesSea quarks Inelastic scatteringHigh-energy collisions114 Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)nuclear PDFsHigh Energy Physics - Phenomenology (hep-ph)Lead Deeply inelastic scatteringsLeadInelastic ScatteringHeavy nucleusHigh Energy Physics::ExperimentNuclear modificationHigh energy physicsNuclear ExperimentPartonsNucleons
researchProduct

The impact of the LHC nuclear program on nPDFs

2015

Volume: 612 The proton-lead and lead-lead runs at the LHC are providing an enormous amount of data sensitive to the nuclear modifications of the initial state. The measurements explore a region of phase space not probed by previous experiments opening a possibility to test and hopefully, also improve the current knowledge of nuclear parton densities. In this talk, we discuss to what extent the present quantitative results for the charge asymmetry in electroweak boson production show sensitivity to the nuclear parton distributions. Peer reviewed

HistoryParticle physicsmedia_common.quotation_subjectNuclear TheorynPDFsParton114 Physical sciences01 natural sciencesAsymmetryEducationNuclear physics0103 physical sciencesNuclear Experiment010306 general physicsmedia_commonBosonQuantum chromodynamicsPhysicsLarge Hadron ColliderLHC nuclear program010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionCharge (physics)Computer Science ApplicationsPARTON DISTRIBUTIONSPhase spaceHigh Energy Physics::ExperimentJournal of Physics: Conference Series
researchProduct

Observation of $Z$ production in proton-lead collisions at LHCb

2014

The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} ��_{Z\to��^+��^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} …

14.70.Hp - Z bosonProtonNuclear Theory01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareLuminosityHigh Energy Physics - Experiment (hep-ex)Heavy-ion collision[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interaction; Forward physics; Heavy Ions; Heavy-ion collision; Particle and resonance productionElectroweak interactionHeavy IonsHeavy IonNuclear ExperimentQCBosonPhysics25.75.Dw - Relativistic heavy-ion collisions: Particle and resonance production; 14.70.Hp - Z bosons; 13.38.Dg - Decays of Z bosons; 12.15.-y - Electroweak interactionsPhysicsHIGH ENERGIES12.15.-y - Electroweak interactionsParticle physicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)13.38.Dg - Decays of Z bosons25.75.Dw - Relativistic heavy-ion collisions: Particle and resonance productionPhysical SciencesPARTON DISTRIBUTIONS; BOSON PRODUCTION; HIGH ENERGIES; NUCLEAR PDFS; DEUTERIUM; DECAYFísica nuclearProduction (computer science)14.70.Hp - Z bosonsParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsNUCLEAR PDFS530 PhysicsDEUTERIUMFOS: Physical sciencesPhysics InstituteLHCb - Abteilung HofmannHadronsParticle and resonance production0103 physical sciencesElectroweak interaction; Forward physics; Heavy Ions; Heavy-ion collision; Particle and resonance production; Nuclear and High Energy PhysicsSDG 7 - Affordable and Clean Energy010306 general physicsForward physicLarge Hadron Collider (France and Switzerland)BOSON PRODUCTION/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & TechnologyMuon010308 nuclear & particles physicshep-exComputer Science::Information RetrievalGran Col·lisionador d'Hadrons13.38.Dg - Decays of Z bosonPARTON DISTRIBUTIONSForward physicsHigh Energy Physics::ExperimentFísica de partículesExperimentsDECAYEnergy (signal processing)JHEP
researchProduct

Spatially dependent parton distribution functions and hard processes in nuclear collisions

2014

hadron productionparton distribution functionsHeavy ion phenomenologythermal photonsNuclear PDFsHard processestermiset fotonitnuclear collisionsfragmentation functionsDirect photonsQCD phenomenologypartonijakaumatfragmentaatiofunktiotydintörmäyksetForward rapiditiesteoreettinen fysiikkaProton+nucleus collisionshadronituotto
researchProduct

Centrality and rapidity dependence of inclusive pion and prompt photon production in p+Pb collisions at the LHC with EPS09s nPDFs

2014

The centrality dependencies of the inclusive neutral pion and prompt photon nuclear modification factors for p+Pb collisions at the LHC are studied using a spatially dependent set of nuclear PDFs, EPS09s. The calculations are performed at mid- and forward rapidities searching for an observable which would optimally probe the spatial dependence of the nuclear PDFs. In addition, we discuss to which $x$ values of the nucleus the different observables are sensitive.

HistoryParticle physicsPhotonNuclear TheoryNuclear TheorynPDFsFOS: Physical sciencesinclusive pion114 Physical sciences01 natural sciencesnuclear parton distribution fucntionsEducationNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Pion0103 physical sciencesmedicineRapiditySpatial dependenceNuclear Experiment010306 general physicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsQCD PREDICTIONSphoton productionObservableComputer Science ApplicationsHigh Energy Physics - Phenomenologymedicine.anatomical_structureCentralityTO-LEADING-ORDERNucleusJournal of Physics: Conference Series
researchProduct

Applicability of pion-nucleus Drell-Yan data in global analysis of nuclear parton distribution functions

2017

Despite the success of modern nuclear parton distribution functions (nPDFs) in describing nuclear hard-process data, they still suffer from large uncertainties. One of the poorly constrained features is the possible asymmetry in nuclear modifications of valence $u$ and $d$ quarks. We study the possibility of using pion-nucleus Drell-Yan dilepton data as a new constraint in the global analysis of nPDFs. We find that the nuclear cross-section ratios from the NA3, NA10 and E615 experiments can be used without imposing significant new theoretical uncertainties and, in particular, that these datasets may have some constraining power on the $u$/$d$ -asymmetry in nuclei.

QuarkDrell-Yan processParticle physicsNuclear and High Energy PhysicsNuclear Theorymedia_common.quotation_subjectNuclear TheoryDrell–Yan processFOS: Physical sciencesPartonhiukkasfysiikka01 natural sciencesAsymmetry114 Physical sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)PionRATIO0103 physical sciencesmedicinePion–nucleus scatteringNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear theoryNuclear Experimentmedia_commonPhysicsta114010308 nuclear & particles physicskvarkitHigh Energy Physics::PhenomenologyDrell–Yan processNuclear parton distribution functionsPion-nucleus scatteringlcsh:QC1-999pion–nucleus scatteringnuclear parton distribution functionsHigh Energy Physics - PhenomenologyDistribution functionmedicine.anatomical_structureDIMUON PRODUCTIONHigh Energy Physics::ExperimentNucleusPDFSlcsh:Physics
researchProduct

Nuclear structure functions at a future electron-ion collider

2017

The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction $x$---robust experimental constraints below $x\ensuremath{\sim}{10}^{\ensuremath{-}2}$ at low resolution scale ${Q}^{2}$ are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in Deep Inelastic Scattering (DIS) measurements down to $x\ensuremath{\sim}{10}^{\ensuremath{-}5}$ at perturbative resolution scales. The construction of an electron-ion collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-$x$ region in much greater detail. In the present paper we simula…

Particle physicsCOLLISIONSparticle interactionsProtonNuclear TheoryHERAFOS: Physical sciencesPartonPROTON7. Clean energy01 natural sciences114 Physical scienceslaw.inventionHigh Energy Physics - ExperimentNuclear physicsNuclear Theory (nucl-th)DEEP-INELASTIC SCATTERINGHigh Energy Physics - Experiment (hep-ex)law0103 physical sciencesKINEMATIC RECONSTRUCTIONNuclear Experiment (nucl-ex)010306 general physicsColliderNuclear ExperimentNuclear ExperimentPhysicsta114010308 nuclear & particles physicsRUNOrder (ring theory)Deep inelastic scatteringGluonDistribution functionnuclear structureHigh Energy Physics::ExperimentLHCnuclear decaysRelativistic Heavy Ion ColliderPDFS
researchProduct