Search results for "PHASE MODULATION"

showing 10 items of 170 documents

Higher-order modulation instability in optical fibers

2012

International audience; We report on theoretical, numerical and experimental study of a new form of instability in a nonlinear fiber. This process of higher-order modulation instability arises from the nonlinear superposition of elementary instability dynamics.

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Cross-phase modulationNonlinear opticsSoliton (optics)MechanicsInstability3. Good healthlaw.inventionModulational instabilitylawModulationQuantum mechanicsHigher-order modulation
researchProduct

Experimental observation of the spectral Gouy phase shift

2013

We experimentally observe and measure the spectral phase shift of a pulse subjected to spectral focusing. We find a phase shift of π/2, reaffirming the Gouy phase shift as a general consequence of wave confinement whether in space/momentum or frequency/time coordinates.

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics][SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industryInterference (wave propagation)Space (mathematics)Measure (mathematics)Pulse shapingPulse (physics)MomentumOptics[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicAtomic physicsbusinessSelf-phase modulationBandwidth-limited pulseComputingMilieux_MISCELLANEOUS
researchProduct

All-Fibered High-Quality 20-GHz and 40-GHz Picosecond Pulse Generator

2011

International audience; In this work, we investigate the generation of 20 and 40 GHz pulse trains by nonlinear compression of an initial beating in a cavity-less optical-fiber-based configuration. High temporal stability is obtained by generating the sinusoidal beating by means of an intensity modulator driven by an external clock. The residual timing jitter induced by the RF phase modulation is then reduced by managing the cumulated dispersion of the compression line whereas complete polarization stabilization is obtained thanks to a modified setup including a Faraday rotator mirror. Finally a high-quality 160 Gbit/s signal is generated from our low duty-cycle 40 GHz pulse source thanks to…

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industry02 engineering and technologyOptical modulation amplitudelaw.invention020210 optoelectronics & photonicsOpticsMode-lockinglaw0202 electrical engineering electronic engineering information engineeringOptoelectronicsFaraday rotatorbusinessIntensity modulationUltrashort pulsePhase modulationBandwidth-limited pulseJitter
researchProduct

Dissipative Optical Breather Molecular Complexes

2020

We demonstrate different types of breathing soliton complexes in a mode-locked fibre laser: multi-breather molecules, and molecular complexes arising from the binding of two breather-pair molecules or a breather-pair molecule and a single breather.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]BreatherCross-phase modulationSoliton (optics)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicssymbols.namesakeFourier transformNonlinear Sciences::Exactly Solvable and Integrable SystemsMode-lockingFiber laser0103 physical sciencesDissipative systemsymbolsMoleculePhysics::Chemical Physics010306 general physics0210 nano-technologyNonlinear Sciences::Pattern Formation and SolitonsComputingMilieux_MISCELLANEOUS
researchProduct

Effects of structural irregularities on modulational instability phase matching in photonic crystal fibers

2004

International audience; The effect of structural irregularities in photonic crystal fibers on scalar and vector modulational instability (MI) processes is studied by numerical simulations and experiments. For an anomalous-dispersion regime pump, variations in core ellipticity as small as 0.5% over length scales of the order of several meters are shown to have a negligible effect on scalar MI, yet they completely suppress vector MI. In contrast, for a normal-dispersion regime pump, vector MI is shown to be robust against such fluctuations.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[ SPI.OTHER ] Engineering Sciences [physics]/Otherbusiness.industryCross-phase modulationScalar (mathematics)Nonlinear opticsPhysics::Optics01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticsCore (optical fiber)Modulational instabilityOpticslaw0103 physical sciences010306 general physicsbusinessComputingMilieux_MISCELLANEOUSPhotonic crystalPhotonic-crystal fiber
researchProduct

Higher-Order Modulation Instability in Nonlinear Fiber Optics

2011

International audience; We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution r…

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]BreatherCross-phase modulationGeneral Physics and Astronomy01 natural sciencesInstability010305 fluids & plasmasPulse (physics)Modulational instabilitysymbols.namesakeClassical mechanics0103 physical sciencessymbolsPeregrine soliton010306 general physicsHigher-order modulationNonlinear Schrödinger equation
researchProduct

Impact of a temporal sinusoidal phase modulation on the optical spectrum

2018

International audience; We discuss the effects of imparting a temporal sinusoidal phase modulation to a continuous wave on the frequency spectrum. While a practical analytical solution to this problem already exists, we present here a physical interpretation based on interference processes. This simple model will help the students better understand the origin of the oscillatory structure that can be observed in the resulting spectrum and that is characteristic of Bessel functions of the first kind. We illustrate our approach with an example from the field of optics.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Field (physics)Bessel functions of the first kindSpectrum (functional analysis)General Physics and AstronomyInterference (wave propagation)01 natural sciencesFourier analysisInterpretation (model theory)010309 opticssymbols.namesakePhase modulationFourier analysis0103 physical sciencessymbolsContinuous waveStatistical physics010306 general physicsPhase modulationBessel function
researchProduct

Nonlinear spectrum broadening cancellation by sinusoidal phase modulation

2017

International audience; We propose and experimentally demonstrate a new approach to dramatically reduce the spectral broadening induced by self-phase modulation occurring in a Kerr medium. By using a temporal sinusoidal phase modulation, we efficiently cancel to a large extend the chirp induced by the nonlinear effect. Experimental validation carried out in a passive or amplifying fiber confirm the interest of the technic for the mitigation of spectral expansion of long pulses.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryCross-phase modulationNonlinear optics02 engineering and technology01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsNonlinear system020210 optoelectronics & photonicsOpticsFiber optics amplifiers and oscillatorsNonlinear optics fibersPhase modulationModulation0103 physical sciences0202 electrical engineering electronic engineering information engineeringChirpSelf-phase modulationbusinessPhase modulationDoppler broadening
researchProduct

Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime

2006

We show analytically and numerically that parabolic pulses and similaritons are not always synonyms and that a self-phase modulation amplification regime can precede the self-similar evolution. The properties of the recompressed pulses after SPM amplification are investigated. We also demonstrate that negatively chirped parabolic pulses can exhibit a spectral recompression during amplification leading to high-power chirp-free parabolic pulses at the amplifier output.

Physicsbusiness.industry02 engineering and technology01 natural sciencesPulse shapingAtomic and Molecular Physics and OpticsPulse (physics)010309 optics020210 optoelectronics & photonicsOpticsFiber Bragg gratingModulationPulse compression0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringChirpSelf-phase modulationbusinessComputingMilieux_MISCELLANEOUSOptics Express
researchProduct

Buffering optical topological data using passive Kerr resonators

2018

We experimentally demonstrate the existence of dissipative polarization domain walls, in a normally dispersive Kerr resonator. Through deterministic manipulation of the laser driving the resonator, we achieve systematic excitation and locking of the domain walls.

Physicsbusiness.industryCross-phase modulationPhysics::OpticsOptical ring resonatorsNonlinear opticsOptical polarization02 engineering and technology021001 nanoscience & nanotechnologyPolarization (waves)Laser01 natural scienceslaw.invention010309 opticsResonatorOpticslaw0103 physical sciencesDissipative system0210 nano-technologybusinessConference on Lasers and Electro-Optics
researchProduct