Search results for "PHOSPHOLIPID-BILAYER"

showing 2 items of 2 documents

Stability of Asymmetric Lipid Bilayers Assessed by Molecular Dynamics Simulations

2009

The asymmetric insertion of amphiphiles into biological membranes compromises the balance between the inner and outer monolayers. As a result, area expansion of the receiving leaflet and curvature strain may lead to membrane permeation, shape changes, or membrane fusion events. We have conducted both atomistic and coarse-grained molecular dynamics simulations of dipalmitoyl-phosphatidylcholine (DPPC) bilayers to study the effect of an asymmetric distribution of lipids between the two monolayers on membrane stability. Highly asymmetric lipid bilayers were found to be surprisingly stable within the submicrosecond time span of the simulations. Even the limiting case of a monolayer immersed in …

12-DipalmitoylphosphatidylcholineLipid BilayersBiochemistryCatalysisColloid and Surface ChemistryCOARSE-GRAINED MODELSHAPE TRANSFORMATIONSMonolayerComputer SimulationLipid bilayer phase behaviorLipid bilayerChemistryBilayerLipid bilayer fusionBiological membraneGeneral ChemistryLipid bilayer mechanicsANTIMICROBIAL PEPTIDESCrystallographyMembraneTRANSMEMBRANE DISTRIBUTIONEGG PHOSPHATIDYLCHOLINEPhosphatidylcholinesPORE FORMATIONBiophysicsPRESSURE PROFILESMECHANOSENSITIVE CHANNELlipids (amino acids peptides and proteins)OCTYL GLUCOSIDEPHOSPHOLIPID-BILAYERSJournal of the American Chemical Society
researchProduct

Myoglobin embedded in saccharide amorphous matrices: water-dependent domains evidenced by small angle X-ray scattering

2010

We report Small Angle X-ray Scattering (SAXS) measurements performed on samples of carboxy-myoglobin (MbCO) embedded in low-water trehalose glasses. Results showed that, in such samples, "low-protein" trehalose-water domains are present, surrounded by a protein-trehalose-water background; such finding is supported by Infrared Spectroscopy (FTIR) measurements. These domains, which do not appear in the absence of the protein and in analogous sucrose systems, preferentially incorporate the incoming water at the onset of rehydration, and disappear following large hydration. This observation suggests that, in organisms under anhydrobiosis, analogous domains could play a buffering role against th…

Photosynthetic reaction centreSucroseGLASS-TRANSITIONGeneral Physics and AstronomyInfrared spectroscopyRhodobacter sphaeroideschemistry.chemical_compoundRhodobacter sphaeroidesScattering Small AngleSpectroscopy Fourier Transform InfraredPHOSPHOLIPID-BILAYERREACTION CENTERSPhysical and Theoretical ChemistrySettore CHIM/02 - Chimica FisicabiologyScatteringSmall-angle X-ray scatteringMyoglobinTrehaloseWaterbiology.organism_classificationPROTEIN DYNAMICSTrehaloseMOLECULAR-DYNAMICS SIMULATIONAmorphous solidCrystallographyMyoglobinchemistryTHERMAL-DENATURATIONNEUTRON-SCATTERINGCARBOXY-MYOGLOBINEXTERNAL MATRIXTREHALOSE-COATED MBCO
researchProduct