Search results for "PHOTOELECTRON-SPECTROSCOPY"

showing 4 items of 4 documents

Exchange coupling in the correlated electronic states of amorphous GdFe films

2013

The bulk sensitivity of hard x-ray photoelectron spectroscopy in combination with circularly polarized radiation of the P09 beamline at PETRA III enables the investigation of the magnetic properties of capped films. We have determined the temperature dependence of the magnetic circular dichroism in the Fe 2$p$ and in the Gd 3$d$ states in amorphous GdFe films. The magnetic dichroism reflects the stronger temperature dependence of Gd moments compared to Fe moments in agreement with mean-field models. We resolved the exchange split Gd 3${d}_{5/2}$ substates and found a significant temperature dependence of the splitting which is attributed to a temperature dependent part of the exchange energ…

Circular dichroismMaterials scienceCondensed matter physicsAbsorption spectroscopySpin polarizationPHOTOELECTRON-SPECTROSCOPYSPIN POLARIZATIONVALENCE STATESMagnetic circular dichroismExchange interactionCORE-LEVEL PHOTOEMISSIONLOCALIZED MAGNETIC SYSTEMSDichroismCondensed Matter PhysicsMAGNETOOPTICAL PROPERTIESX-RAY DICHROISMElectronic Optical and Magnetic MaterialsAmorphous solidCIRCULAR-DICHROISMANGULAR-DISTRIBUTIONX-ray photoelectron spectroscopyddc:530TRANSITION-METAL ALLOYS
researchProduct

Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods

2013

Metal oxides are versatile substrates for the design of a wide range of SAM-based organic-inorganic materials among which ZnO nanostructures modified with phosphonic SAM are promising semiconducting systems for applications in technological fields such as biosensing, photonics, and field-effect transistors (FET). Despite previous studies reported on various successful grafting approaches, issues regarding preferred anchoring modes of phosphonic acids and the role of a second reactive group (i.e., a carboxylic group) are still a matter of controversial interpretations. This paper reports on an experimental and theoretical study on the functionalization of ZnO nanorods with monofunctional alk…

Materials scienceNanostructureOXIDE SURFACESNanoparticleMetalchemistry.chemical_compoundSELF-ASSEMBLED MONOLAYERSNANOPARTICLESOrganic chemistrySELF-ASSEMBLED MONOLAYERS; RAY PHOTOELECTRON-SPECTROSCOPY; POLARIZABLE CONTINUUM MODEL; MOLECULAR-ORBITAL METHODS; SENSITIZED SOLAR-CELLS; SURFACE FUNCTIONALIZATION; OXIDE SURFACES; ZINC-OXIDE; NANOPARTICLES; ALUMINUMZINC-OXIDEPhysical and Theoretical ChemistryBifunctionalSelf-assembled monolayerSURFACE FUNCTIONALIZATIONALUMINUMCombinatorial chemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMOLECULAR-ORBITAL METHODSGeneral EnergychemistryPOLARIZABLE CONTINUUM MODELvisual_artRAY PHOTOELECTRON-SPECTROSCOPYvisual_art.visual_art_mediumSurface modificationNanorodSENSITIZED SOLAR-CELLSBiosensorThe Journal of Physical Chemistry C
researchProduct

Oxide-based nanomaterials for fuel cell catalysis:the interplay between supported single Pt atoms and particles

2017

The concept of single atom catalysis offers maximum noble metal efficiency for the development of low-cost catalytic materials. Among possible applications are catalytic materials for proton exchange membrane fuel cells. In the present review, recent efforts towards the fabrication of single atom catalysts on nanostructured ceria and their reactivity are discussed in the prospect of their employment as anode catalysts. The remarkable performance and the durability of the ceria-based anode catalysts with ultra-low Pt loading result from the interplay between two states associated with supported atomically dispersed Pt and sub-nanometer Pt particles. The occurrence of these two states is a co…

Materials sciencePHOTOELECTRON-SPECTROSCOPYReducing agentCatalitzadorsOxideProton exchange membrane fuel cellNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesRedoxPALLADIUM NANOPARTICLESCatalysisNanomaterialsCatalysischemistry.chemical_compoundAdsorptionPiles de combustibleD-METAL ATOMSFuel cellsCatalystsCEO2(111) SURFACECO OXIDATIONIN-SITUNanostructured materialsSILICON SUBSTRATE021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringGRAPHITE FOILengineeringTHIN-FILM CATALYSTSNoble metalMaterials nanoestructuratsCERIA-BASED OXIDE0210 nano-technology
researchProduct

Light absorption in silicon quantum dots embedded in silica

2009

The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient a…

SOLAR-CELLSPhotoluminescenceMaterials scienceEFFICIENCYSiliconAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementChemical vapor depositionOPTICAL-PROPERTIESRutherford backscattering spectrometryFILMSSettore ING-INF/01 - Elettronica3RD-GENERATION PHOTOVOLTAICSSettore FIS/03 - Fisica Della MateriaMULTIPLE EXCITON GENERATIONchemistryX-ray photoelectron spectroscopyPlasma-enhanced chemical vapor depositionQuantum dotRAY PHOTOELECTRON-SPECTROSCOPYLUMINESCENCESI NANOCRYSTALSCOEFFICIENTAbsorption (electromagnetic radiation)
researchProduct