Search results for "PHOTOMULTIPLIER"
showing 10 items of 194 documents
DOI measurement with monolithic scintillation crystals: A primary performance evaluation
2007
We report a first assessment of image quality enhancement achieved by the implementation of depth of interaction detection with monolithic crystals. The method of interaction depth measurement is based on analogue computation of the standard deviation with an enhanced charge divider readout. This technique of depth of interaction detection was developed in order to provide fast and determination of this parameter at a reasonable increase of detector cost. The detector consists of an large-sized monolithic scintillator coupled to a position sensitive photomultiplier tube. A special design feature is the flat-topped pyramidal shape of the crystal. This reduces image compression near the edges…
2021
Abstract IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment's photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yie…
Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration
2014
The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40…
Resolution changes of MCP-PMTs in magnetic fields
2016
Micro-channel plate photomultiplier tubes (MCP-PMTs) are chosen in many applications that have to cope with strong magnetic fields. The DIRC detectors of the PANDA experiment plan to employ them as they show excellent timing characteristics, radiation hardness, relatively low dark count rates and sufficient lifetime. This article mainly focuses on the performance of the position reconstruction of detected photons. Two different MCP-PMTs with segmented anode geometries have been tested in magnetic fields of different strengths. The variation of their performance has been studied. The measurements show improved position resolution and image shifts with increasing magnetic field strength.
A Disc-DIRC Cherenkov detector with high resolution micro channel plate photomultiplier tubes
2014
The upcoming PANDA Experiment at FAIR in Germany will be equipped with a novel Cherenkov detector type for high-energy particle identification. This very compact Disc-DIRC detector uses a large disc-shaped fused silica plate of 2 cm thickness as its Cherenkov radiator. The internally reflected Cherenkov light is transported to the rim of the disc where it is focused by quartz light guides onto microchannel plate photomultiplier tubes (MCP-PMTs) with high spatial resolution (pitch 0.5 mm) and high time resolution (σ ≈ 100 ps). The device has an active area of about 3 m2 and will be able to identify pions and kaons with a separation power of more than 3σ in the momentum range up to 4 GeV/c. I…
Detection system for forward emitted photons at the Experimental Storage Ring at GSI
2013
A single photon counting system has been developed for efficient detection of forward emitted fluorescence photons at the Experimental Storage Ring (ESR) at GSI. The system employs a movable parabolic mirror with a central slit that can be positioned around the ion beam and a selected low noise photomultiplier for detection of the collected photons. Compared to the previously used system of mirror segments installed inside the ESR the collection efficiency for forward-emitted photons is improved by more than a factor of 5. No adverse effects on the stored ion beam have been observed during operation besides a small drop in the ion current of about 5% during movement of the mirror into the b…
Proof-of-principle measurements with a liquid-scintillator detector using wavelength-shifting optical modules
2018
Based on test-beam measurements, we study the response of a liquid-scintillator detector equipped with wavelength-shifting optical modules, that are proposed e.g. for the IceCube experiment and the SHiP experiment, and adiabatic light guides that are viewed either by a photomultiplier tube or by an array of silicon photomultipliers. We report on the efficiency, the time resolution and the detector response to different particle types and point out potential ways to improve the detector performance.
A tracking fiber detector based on silicon photomultipliers for the KAOS spectrometer
2011
A tracking detector based on two meters long scintillating fibers read out by silicon photomultipliers (SiPM) is being developed for the Kaos spectrometer at the Mainz Microtron MAMI. Results from a prototype setup using 2 mm square fibers and large area SiPM readout are presented. The detection efficiency of such a combination was measured to be between 83 and 100% depending on the threshold on the SiPM amplitude. A Monte Carlo simulation based on a physical model was employed in order to extract the photon detection efficiency of the SiPM devices.
A highly integrated low-cost readout system for the COMPASS RICH-1 detector
2007
Particle identification at high multiplicities is a key feature of the COMPASS experiment at CERN's SPS. Hadrons up to 50 GeV/c are identified by a RICH detector with a large horizontal and vertical acceptance of plusmn250 mrad and plusmn180 mrad, respectively. The central region of the photon detector is equipped with multi-anode photomultiplier tubes, the remaining 75% of the total active area are covered by MWPCs with Csl photocathodes. In order to improve the performance of the detector at very high beam intensities, more than 62000 channels of a new analog readout system of the MWPCs, based on the APV25 chip, were developed and installed in 2006. The new system features good single pho…
SNR measurements of silicon photomultipliers in the continuous wave regime
2014
We report on our Signal-to-Noise Ratio (SNR) measurements carried out, in the continuous wave regime, at different frequencies and at various temperatures, on a novel class of silicon photomultipliers (SiPMs) fabricated in planar technology on silicon p-type substrate. SNR of SiPMs is given by the ratio of the photogenerated current, filtered and averaged by a lock-in amplifier, and the Root Mean Square (RMS) deviation of the same current. In our measurements, we have employed a 10 Hz equivalent noise bandwidth, around the lock-in amplifier reference frequency. The measured noise takes into account the shot noise, resulting from the photocurrent and the dark current, while background light …