Search results for "PHOTONS"
showing 10 items of 164 documents
Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC
2020
The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.
Multiphoton Absorption of Myoglobin Nitric-Oxide complex: Relaxation by D-NEMD of a Stationary State
2012
ABSTRACT: The photodissociation and geminate recombination of nitric oxide in myoglobin, under continuous illumination, is modeled computationally. The relaxation of the photon energy into the protein matrix is also considered in a single simulation scheme that mimics a complete experimental setup. The dynamic approach to non-equilibrium molecular dynamics is used, starting from a steady state, to compute its relaxation to equilibrium. Simulations are conducted for the native form of sperm whale myoglobin and for two other mutants, V68W and L29F, illustrating a fair diversity of spatial and temporal geminate recombination processes. Energy flow to the heme and immediate protein environment …
Two-color ionization of hydrogen by short intense pulses
2010
Photoelectron energy spectra resulting by the interaction of hydrogen with two short pulses having carrier frequencies, respectively, in the range of the infrared and XUV regions have been calculated. The effects of the pulse duration and timing of the X-ray pulse on the photoelectron energy spectra are discussed. Analysis of the spectra obtained for very long pulses show that certain features may be explained in terms of quantum interferences in the time domain. It is found that, depending on the duration of the X-ray pulse, ripples in the energy spectra separated by the infrared photon energy may appear. Moreover, the temporal shape of the low frequency radiation field may be inferred by …
Spectral energy distribution and generalized Wien's law for photons and cosmic string loops
2014
Physical objects with energy $u_w(l) \sim l^{-3w}$ with $l$ characteristic length and $w$ a dimensionless constant, lead to an equation of state $p=w\rho$, with $p$ the pressure and $\rho$ the energy density. Special entities with thisbproperty are, for instance, photons ($u = hc/l$, with $l$ the wavelength) with $w = 1/3$, and some models of cosmic string loops ($u =(c^4/aG)l$, with $l$ the length of the loop and $a$ a numerical constant), with $w = -1/3$. Here, we discuss some features of the spectral energy distribution of these systems and the corresponding generalization of Wien's law, which in terms of $l$ has the form $Tl_{mp}^{3w}=constant$, being $l_{mp}$ the most probable size of …
A laser-based system for a fast and accurate measurement of gain and linearity of photomultipliers
2018
This paper describes a method for the measurement of gain and linearity of photomultipliers (PMTs). Gain and linearity are two fundamental parameters to use properly a PMT in several physics experiments. In the developed system light is laser generated and adressed to the PMT through a set of optical fibers. The data acquisition system consists in a commercial 16 channel digitizer coupled to a custom front-end board. With the chosen digitizer the system is scalable to test up to 16 PMTs, with the aid of a light distribution system and a multi-channel version of the front-end board. Data analysis is performed by a custom acquisition software. A 1.5» Hamamatsu PMT is used to validate the syst…
Emission tomography with a large-hole collimator (CACAO): a possible new way to improve radionuclide imaging.
2002
This work aims to improve the quality of scintigraphy. It evaluates the use of a large-hole collimator, the Computer Aided Collimation Gamma Camera Project (CACAO), in SPECT. Acquisition data from the same object were simulated for CACAO and for a conventional collimator. Better signal-to-noise ratios were found for CACAO images, whatever the number of emitted photons. This work demonstrates that high-resolution images may be obtained with large-hole collimators. The combination of CACAO and pixilated detectors may further improve radionuclide imaging.
Characterization of phenolic pellets for ESR dosimetry in photon beam radiotherapy
2017
This work deals with the dosimetric features of a particular phenolic compound (IRGANOX 1076 ® ) for dosimetry of clinical photon beams by using electron spin resonance (ESR) spectroscopy. After the optimization of the ESR readout parameters (namely modulation amplitude and microwave power) to maximise the signal without excessive spectrum distortions, basic dosimetric properties of laboratory-made phenolic dosimeters in pellet form, such as reproducibility, dose–response, sensitivity, linearity and dose rate dependence were investigated. The dosimeters were tested by measuring the depth dose profile of a 6 MV photon beam. A satisfactory intra-batch reproducibility of the ESR signal of the …
Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths
2017
In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturisation potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagati…
Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein
2016
Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein.Science, this issue p. 725A variety of organisms have evolved mechanisms to detect and respond to light, in which the re…
Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment
2013
NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the bet…