Search results for "PLASTICITY"

showing 10 items of 765 documents

Semaphorins in Adult Nervous System Plasticity and Disease

2021

Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neuro…

0301 basic medicineNervous systemsemaphorinsanimal structuresautismNeurosciences. Biological psychiatry. NeuropsychiatryReviewHippocampal formationBiologymultiple sclerosisExtracellular matrix03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineSemaphorinNeuroplasticitymedicineMultiple sclerosisPerineuronal netNeurogenesisCell Biologymedicine.diseaseschizophrenia030104 developmental biologymedicine.anatomical_structurenervous systemplasticityembryonic structuresAlzheimer’s disease; autism; epilepsy; multiple sclerosis; perineuronal net; plasticity; schizophrenia; semaphorinsepilepsysense organsperineuronal netbiological phenomena cell phenomena and immunityNeuroscienceAlzheimer’s disease030217 neurology & neurosurgeryNeuroscienceRC321-571
researchProduct

Binge-like ethanol treatment in adolescence impairs autophagy and hinders synaptic maturation: Role of TLR4.

2018

Abstract Adolescence is a developmental period of brain maturation in which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. A different mechanism participates in adolescent brain maturation, including autophagy processes that play a role in synaptic development and plasticity. Alcohol is a neurotoxic compound whose abuse in adolescence causes TLR4 response activation by triggering neuroinflammation, neural damage and behavioral alterations. However, the potential participation of autophagy in long-term neurochemical and cognitive dysfunctions induced by binge ethanol drinking in adolescence is uncertain. We therefore evaluated whether …

0301 basic medicineNeurogenesisImmune receptorBiologyBinge Drinking03 medical and health sciencesMice0302 clinical medicineNeurochemicalAutophagyAnimalsTLR4PI3K/AKT/mTOR pathwayNeuroinflammationMice KnockoutBinge ethanol treatmentEthanolGeneral NeuroscienceAutophagyAge FactorsAdolescenceMice Inbred C57BLToll-Like Receptor 4030104 developmental biologyStructural synaptic plasticitySynaptic plasticitySynapsesExcitatory postsynaptic potentialTLR4FemaleNeuroscience030217 neurology & neurosurgeryNeuroscience letters
researchProduct

Intrinsic volatility of synaptic connections — a challenge to the synaptic trace theory of memory

2017

According to the synaptic trace theory of memory, activity-induced changes in the pattern of synaptic connections underlie the storage of information for long periods. In this framework, the stability of memory critically depends on the stability of the underlying synaptic connections. Surprisingly however, synaptic connections in the living brain are highly volatile, which poses a fundamental challenge to the synaptic trace theory. Here we review recent experimental evidence that link the initial formation of a memory with changes in the pattern of connectivity, but also evidence that synaptic connections are considerably volatile even in the absence of learning. Then we consider different…

0301 basic medicineNeuronal PlasticityGeneral Neuroscience[SCCO.NEUR]Cognitive science/NeuroscienceModels NeurologicalTheoretical modelsBrain03 medical and health sciences030104 developmental biology0302 clinical medicineAnti-Hebbian learningMemoryNeuroplasticityMetaplasticityNeural PathwaysSynapsesAnimalsHumansLearningPsychologyNeuroscience030217 neurology & neurosurgeryComputingMilieux_MISCELLANEOUSTrace theory
researchProduct

Tuning neural circuits by turning the interneuron knob

2017

Interneurons play a critical role in sculpting neuronal circuit activity and their dysfunction can result in neurological and neuropsychiatric disorders. To temporally structure and balance neuronal activity in the adult brain interneurons display a remarkable degree of subclass-specific plasticity, of which the underlying molecular mechanisms have recently begun to be elucidated. Grafting new interneurons to pre-existing neuronal networks allows for amelioration of circuit dysfunction in rodent models of neurological disease and can reopen critical windows for circuit plasticity. The crucial contribution of specific classes of interneurons to circuit homeostasis and plasticity in health an…

0301 basic medicineNeuronal PlasticityInterneurongenetic structuresGeneral NeurosciencefungiBiology03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemInterneuronsmedicineBiological neural networkPremovement neuronal activityAnimalsHomeostasisHumansNervous System DiseasesReprogrammingNeuroscience030217 neurology & neurosurgery
researchProduct

Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication.

2020

Synaptic transmission and plasticity are shaped by the dynamic reorganization of signaling molecules within pre- and postsynaptic compartments. The nanoscale organization of key effector molecules has been revealed by single-particle trajectory (SPT) methods. Interestingly, this nanoscale organization is highly heterogeneous. For example, presynaptic voltage-gated calcium channels (VGCCs) and postsynaptic ligand-gated ion channels such as AMPA receptors (AMPARs) are organized into so-called nanodomains where individual molecules are only transiently trapped. These pre- and postsynaptic nanodomains are characterized by a high density of molecules but differ in their molecular organization an…

0301 basic medicineNeuronsCell signalingNeuronal PlasticityVoltage-dependent calcium channelEffectorChemistryGeneral NeuroscienceAMPA receptorNeurotransmissionSynaptic Transmission03 medical and health sciencesMolecular dynamics030104 developmental biology0302 clinical medicinePostsynaptic potentialSynapsesBiophysicsHumansReceptors AMPA030217 neurology & neurosurgeryIon channelTrends in neurosciences
researchProduct

Pain-Induced Negative Affect Is Mediated via Recruitment of The Nucleus Accumbens Kappa Opioid System.

2019

Negative affective states affect quality of life for patients suffering from pain. These maladaptive emotional states can lead to involuntary opioid overdose and many neuropsychiatric comorbidities. Uncovering the mechanisms responsible for pain-induced negative affect is critical in addressing these comorbid outcomes. The nucleus accumbens (NAc) shell, which integrates the aversive and rewarding valence of stimuli, exhibits plastic adaptations in the presence of pain. In discrete regions of the NAc, activation of the kappa opioid receptor (KOR) decreases the reinforcing properties of rewards and induces aversive behaviors. Using complementary techniques, we report that in vivo recruitment …

0301 basic medicinePainDynorphinNucleus accumbensAffect (psychology)κ-opioid receptorDynorphinsNucleus AccumbensArticle03 medical and health sciencesMice0302 clinical medicineNeuroplasticitymedicineAnimalsValence (psychology)InflammationNeuronsNeuronal Plasticitybusiness.industryMood DisordersGeneral NeuroscienceReceptors Opioid kappaOpioid overdoseNeural Inhibitionmedicine.diseaseRatsAffect030104 developmental biologyOpioidbusinessNeuroscience030217 neurology & neurosurgerymedicine.drugNeuron
researchProduct

Acute Cortical Transhemispheric Diaschisis after Unilateral Traumatic Brain Injury

2017

Focal neocortical brain injuries lead to functional alterations, which can spread beyond lesion-neighboring brain areas. The undamaged hemisphere and its associated disturbances after a unilateral lesion, so-called transhemispheric diaschisis, have been progressively disclosed over the last decades; they are strongly involved in the pathophysiology and, potentially, recovery of brain injuries. Understanding the temporal dynamics of these transhemispheric functional changes is crucial to decipher the role of the undamaged cortex in the processes of functional reorganization at different stages post-lesion. In this regard, little is known about the acute-subacute processes after 24-48 h in th…

0301 basic medicinePatch-Clamp TechniquesTraumatic brain injurySomatosensory system03 medical and health sciences0302 clinical medicineCortex (anatomy)Unilateral lesionBrain Injuries TraumaticNeuroplasticitymedicineAnimalsDiaschisisNeuronal PlasticityMotor CortexElectroencephalographySomatosensory Cortexmedicine.diseaseMice Inbred C57BLDisease Models AnimalElectrophysiology030104 developmental biologymedicine.anatomical_structureBrain HemisphereNeurology (clinical)PsychologyNeuroscience030217 neurology & neurosurgeryJournal of Neurotrauma
researchProduct

Subchronic administration of auranofin reduced amyloid-β plaque pathology in a transgenic APPNL-G-F/NL-G-F mouse model

2020

Abstract Alzheimer’s disease (AD) is the most common cause of dementia. Neuropathological processes, including the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles, and neuroinflammation, lead to cognitive impairment at middle and eventually later stages of AD progression. Over the last decade, focused efforts have explored repurposed drug approaches for AD pathophysiological mechanisms. Recently, auranofin, an anti-inflammatory drug, was shown to have therapeutic potential in a number of diseases in addition to rheumatoid arthritis. Surprisingly, no data regarding the effects of auranofin on cognitive deficits in AD mice or the influence of auranofin on Aβ pathology and n…

0301 basic medicinePathologymedicine.medical_specialtyAuranofinGlial fibrillary acidic proteinbiologybusiness.industryAmyloid betaGeneral NeuroscienceGlutamate decarboxylaseHippocampusPathophysiology03 medical and health sciences030104 developmental biology0302 clinical medicineSynaptic plasticitybiology.proteinMedicineNeurology (clinical)businessMolecular Biology030217 neurology & neurosurgeryNeuroinflammationDevelopmental Biologymedicine.drugBrain Research
researchProduct

Cocaine-induced changes in CX3CL1 and inflammatory signaling pathways in the hippocampus: Association with IL1β

2020

Cocaine induces neuroinflammatory response and interleukin-1 beta (IL1β) is suggested a final effector for many cocaine-induced inflammatory signals. Recently, the chemokine fractalkine (CX3CL1) has been reported to regulate hippocampus-dependent neuroinflammation and synaptic plasticity via CX3C-receptor 1 (CX3CR1), but little is known about the impact of cocaine. This study is mainly focused on the characterization of CX3CL1, IL1β and relevant inflammatory signal transduction pathways in the hippocampus in acute and repeated cocaine-treated male mice. Complementarily, the rewarding properties of cocaine were also assessed in Cx3cr1-knockout (KO) mice using a conditioned place preference (…

0301 basic medicinePharmacologyChemokinemedicine.medical_specialtybiologyChemistryHippocampusCREBConditioned place preference03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biology0302 clinical medicineEndocrinologyInternal medicineCX3CR1Synaptic plasticitybiology.proteinmedicineCX3CL1030217 neurology & neurosurgeryNeuroinflammationNeuropharmacology
researchProduct

A historic perspective on the current progress in elucidation of the biologic significance of non-neuronal acetylcholine

2020

The "5th International Symposium on Non-neuronal Acetylcholine: from bench to bedside" was held on September 27-29, 2019 in Hyatt Regency, Long Beach, CA, USA. Approximately 50 scientists from 11 countries over 6 continents participated in this meeting. The major topics included an overall biologic significance of non-neuronal acetylcholine (ACh) and the roles of the non-neuronal cholinergic systems in mucocutaneous, respiratory, digestive, immunologic, endocrine, cardiovascular, musculoskeletal and kidney diseases, and cancer. This meeting facilitated continued work to advance the fundamental science and translational aspects of the interdisciplinary studies on non-neuronal ACh. The progre…

0301 basic medicinePharmacologyImmunologyBiologyNon neuronal acetylcholine03 medical and health sciencesParacrine signalling030104 developmental biology0302 clinical medicine030220 oncology & carcinogenesisNeuroplasticitymedicineImmunology and AllergyCholinergicAutocrine signallingNeuroscienceHomeostasisAcetylcholineAcetylcholine receptormedicine.drugInternational Immunopharmacology
researchProduct