Search results for "PLASTICS"

showing 10 items of 2724 documents

Competition between α and γ phases in isotactic polypropylene: effects of ethylene content and nucleating agents at different cooling rates

2001

Abstract The influence of ethylene content, nucleating agents and cooling rate upon the formation of γ phase in isotactic polypropylene is investigated. Detailed analysis of wide angle X-ray diffraction shows that some γ phase can appear even in copolymers of very low ethylene content (0.5 mol.%). Differential scanning calorimetry shows a double melting peak. Nucleating agents of different types are found to enhance γ phase crystallization, even in high molecular weight homopolymers. In any of the materials studied the amount of γ phase decreases with increasing cooling rate, going to zero at a cooling rate of about 10°C s−1. We interpret the observations in terms of the kinetics of growth …

EthyleneMaterials sciencePolymers and PlasticsComonomerOrganic ChemistryKineticsNucleationlaw.inventionchemistry.chemical_compoundDifferential scanning calorimetrychemistryChemical engineeringlawTacticityPolymer chemistryMaterials ChemistryCopolymerCrystallizationPolymer
researchProduct

Synthesis and structural characterization of ethylene copolymers containing double-decker silsesquioxane as pendant groups and cross-linkage sites by…

2018

Abstract The copolymers of ethylene with the double-decker silsesquioxane (DDSQ) were synthesized by copolymerization with the use of metallocene and bis(phenoxy-imine) catalysts. The influence of the kind of the catalyst and polyreaction conditions on the performance of copolymerization as well as on the properties of the copolymers was studied. Depending on polyreaction parameters, the DDSQ contents in the copolymer varied in the range of 0.93–11.53 wt% which determined the compositions and the structural properties of copolymers. DDSQ incorporated into the polymer chain could constitute pendant groups in the main chain or it could act as a cross-linking agent. The ethylene/DDSQ copolymer…

EthyleneMaterials sciencePolymers and PlasticsGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionCatalysischemistry.chemical_compoundcoordinative copolymerizationlawPolymer chemistryMaterials ChemistryCopolymerethyleneCrystallizationchemistry.chemical_classificationdouble-decker silsesquioxane (DDSQ)Organic ChemistryPolymer021001 nanoscience & nanotechnologySilsesquioxane0104 chemical scienceschemistry0210 nano-technologyGlass transitionMetallocenecross-linkingEuropean Polymer Journal
researchProduct

Studies on the microstructure of ethylene/1-hexene copolymers prepared over heterogeneous Ziegler - Natta catalysts

2000

Three MgCl 2(THF) 2-supported, AlEt 2Cl-activated VOCl 3, VCl 4 and TiCl 4 Ziegler - Natta catalysts were used to copolymerize ethylene with 1-hexene in the presence of hydrogen to prepare low-M well-soluble copolymers that could be analyzed by 13C-NMR. The spectra (Fig. 1) showed resonance signals due to ethylene and 1-hexene units in positions unaffected by catalyst type and with intensities related to the degree of comonomer incorporation into the copolymer. The triad sequence distribution and comonomer reactivity ratios (r) were calculated by the Randall method [11] and Bernoulli statistics based on the known copolymer composition. The latter appeared to be the more valid in predicting …

EthyleneMaterials sciencePolymers and PlasticsbiologyGeneral Chemical EngineeringmicrostructureNattaethylene/1-hexene copolymersbiology.organism_classificationMicrostructurereactivity ciefficientsCatalysis1-Hexenechemistry.chemical_compoundchemistryMgCl2(THF)2-supported V and Ti catalystsMaterials ChemistryCopolymerOrganic chemistryPolimery
researchProduct

Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate)

2009

Mechanical recycling of poly(ethylene terephthalate) (PET) was simulated by multiple processing to assess the effects of thermo-mechanical degradation, and characterized using rheological and thermal analysis techniques. Thermo-mechanical degradation under repeated extrusion induces chain scission reactions in PET, which result in a dramatic loss in the deformation capabilities and an increase in the fluidity of the polymer under reprocessing, reducing its recycling possibilities after four extrusion cycles. Multiple reprocessing severely affects the storage modulus and the microstructure of recycled PET, both in the amorphous and crystalline regions. Multimodal melting behavior is observed…

EthyleneMaterials scienceSolucions polimèriquesPolymers and PlasticsOrganic ChemistryTermoplàsticschemistry.chemical_compoundCrystallinityThermchemistryDegradation (geology)ExtrusionThermal stabilityComposite materialThermal analysisMelt flow index
researchProduct

Polypropylene and poly(ethylene-co-1-octene) effective synthesis with diamine-bis(phenolate) complexes: Effect of complex structure on catalyst activ…

2017

A series of group 4 metal complexes bearing amine-bis(phenolate) ligands with the amino side-arm donor: (μ-O)[Me2N(CH2)2N(CH2-2-O-3,5-tBu2-C6H2)2ZrCl]2 (1a), R2N(CH2)2N(CH2-2-O-3-R1-5-R2-C6H2)2TiCl2 (R = Me, R1, R2 = tBu (2a), R = iPr, R1, R2 = tBu (2b), R = iPr, R1 = tBu, R2 = OMe (2c)), and Me2N(CH2)2N(CH2-2-O-3,5-tBu2-C6H2)(CH2-2-O-C6H4)TiCl2 (2d) are used in ethylene and propylene homopolymerization, and ethylene/1-octene copolymerization. All complexes, upon their activation with Al(iBu)3/Ph3CB(C6F5)4, exhibit reasonable catalytic activity for ethylene homo- and copolymerization giving linear polyethylene with high to ultra-high molecular weight (600·× 103–3600·× 103 g/mol). The activi…

EthylenePolymers and Plastics010405 organic chemistryComonomerOrganic Chemistrydiamino-bis(phenolate) catalystsmicrostructurepoly(ethylene-co-1-octene)Ziegler-Natta polymerization010402 general chemistry01 natural sciences0104 chemical sciencesCatalysisLinear low-density polyethylenechemistry.chemical_compoundchemistryPolymerizationDiaminePolymer chemistryMaterials ChemistryCopolymer1-OctenepolypropyleneJournal of Polymer Science Part A-Polymer Chemistry
researchProduct

Titanium and vanadium catalysts with oxazoline ligands for ethylene-norbornene (co)polymerization

2018

A series of catalysts, (Py-ox)TiCl4, (Py-box)TiCl4, (Py-ox)VCl3, (Py-box)VCl3, SIL/(Py-ox)VCl3, SIL/(Py-box)VCl3, with 2-(1,3-oxazolin-2-yl)pyridine (Py-ox) and 2,6-bis(1,3-oxazolin-2-yl)pyridine (Py-box) ligands, silica support modified by 1-[3-(triethoxysilyl)propyl]pyridinium ethylchloroaluminate ionic liquid (SIL), activated by AlEt2Cl, AlEtCl2, and methylaluminoxane (MMAO) were studied in ethylene polymerization and ethylene-norbornene copolymerization. Single-crystal X-ray diffraction is given for both Py-ox and Py-box. The complexation was confirmed by NMR and ESI-MS methods. All complexes were found to be active in ethylene polymerization with better performance of the vanadium cata…

EthylenePolymers and Plastics010405 organic chemistryOrganic ChemistryMethylaluminoxaneGeneral Physics and AstronomynorbornenePolyethyleneoxazoline ligands010402 general chemistry01 natural sciences0104 chemical sciencesIonic liquidschemistry.chemical_compoundchemistryPolymerizationorganometallic catalystsPolymer chemistryPyridineMaterials ChemistryCopolymercopolymersethylenePyridiniumNorborneneEuropean Polymer Journal
researchProduct

Grafting of Hindered Phenol Groups onto Ethylene/α-Olefin Copolymer by Nitroxide Radical Coupling

2017

The covalent immobilization of hindered phenol groups, with potential antioxidant activity, onto an ethylene/α-olefin (EOC) copolymer was carried out by the nitroxide radical coupling (NRC) reaction performed in the melt with a peroxide and the 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-T). Functionalized EOC (EOC-g-(BHB-T)) was exposed to photo- and thermo-oxidation. By comparison with some model compounds bearing the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety or the hindered phenol unit, it was observed that the grafted BHB-T could effectively help the stabilization of the polymer matrix both under photo- and thermo-oxidation. In addit…

EthylenePolymers and Plastics02 engineering and technology010402 general chemistry01 natural sciencesPeroxideArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistrynitroxide radical couplingPolymer chemistryCopolymerMoietyantioxidant covalent immobilizationchemistry.chemical_classificationOlefin fiberhindered phenol moietyChemistry (all)General ChemistryPolymer021001 nanoscience & nanotechnologyGrafting0104 chemical scienceschemistryCovalent bondantioxidant covalent immobilization; nitroxide radical coupling; hindered phenol moiety; HAS-NOR antioxidant0210 nano-technologyHAS-NOR antioxidantPolymers
researchProduct

Polymerization of ethylene by oxide-supported titanium halide catalyst: kinetic model with a deactivation of active species

2000

Abstract The effect of the calcination temperature of alumina, which was then used as a support for a titanium halide catalyst [TiCl4/Et2AlCl], on the catalyst activity in ethylene polymerization was investigated. α-Al2O3 was found to make a more advantageous catalyst support as compared to γ-Al2O3 despite the fact that the former offered a clearly lower specific surface area and its content of surface OH groups was inferior. The ethylene polymerization in the presence of the catalytic system on different alumina supports was investigated on the basis of a proposed kinetic model, taking into consideration the deactivation of active sites in the process. The improved activity was found to re…

EthylenePolymers and PlasticsCatalyst supportOrganic Chemistrytechnology industry and agriculturechemistry.chemical_elementPolymerization of ethyleneCatalysisTitanium chloridechemistry.chemical_compoundchemistryPolymerizationSpecific surface areaPolymer chemistryMaterials ChemistryTitanium Ziegler–Natta type catalystZiegler–Natta catalystOxide-type supportTitaniumPolymer
researchProduct

Vanadium complex with tetradentate [O,N,N,O] ligand supported on magnesium type carrier for ethylene homopolymerization and copolymerization

2009

Immobilization of 1,2-cyclohexylenebis(5-chlorosalicylideneiminato)vanadium dichloride on the magnesium support obtained in the reaction of MgCl 2 .3.4EtOH with Et 2 AlCl gives a highly active precursor for ethylene homopolymerization and its copolymerization with 1-octene. This catalyst exhibits the highest activity in conjunction with MAO, but it is also highly active with AlMe 3 as a cocatalyst. On the other hand, when combined with chlorinated alkylaluminum compounds, Et 2 AlCl and EtAlCl 2 , it gives traces of polyethylene. Moreover, its catalytic activity is strongly affected by the reaction temperature: it increased with rising polymerization temperature from 20 °C to 60 °C, The kine…

EthylenePolymers and PlasticsChemistryMagnesiumOrganic Chemistrychemistry.chemical_elementVanadiumPolyethyleneCatalysischemistry.chemical_compoundPolymerizationPolymer chemistryMaterials ChemistryCopolymerTitaniumJournal of Polymer Science Part A: Polymer Chemistry
researchProduct

Amino Functional Poly(ethylene glycol) Copolymers via Protected Amino Glycidol

2010

The synthesis of poly(ethylene glycol) (PEG) copolymers with multiple amino functionalities within the chain is described, relying on an epoxide comonomer bearing a protected amino group. N,N-dibenzyl amino glycidol (DBAG) and ethylene oxide (EO) were copolymerized via anionic polymerization, leading to well-defined polymers with varied comonomer content and low polydispersities (Mw/Mn in the range of 1.1 to 1.2). Subsequent hydrogenolysis with Pearlman’s catalyst afforded poly(ethylene glycol-co-amino glycerol)s (PEG-co-PAG) with a precisely adjusted number of randomly incorporated amino groups in the range of 2−15%. For the first time, the kinetics of an EO copolymerizations have has been…

EthylenePolymers and PlasticsEthylene oxideComonomerOrganic Chemistrytechnology industry and agricultureGlycidolEpoxideInorganic Chemistrychemistry.chemical_compoundAnionic addition polymerizationMonomerchemistryPolymer chemistryMaterials ChemistryOrganic chemistryEthylene glycolMacromolecules
researchProduct