Search results for "POLYSIALIC ACID"
showing 10 items of 21 documents
The dendritic spines of interneurons are dynamic structures influenced by PSA-NCAM expression.
2013
Excitatory neurons undergo dendritic spine remodeling in response to different stimuli. However, there is scarce information about this type of plasticity in interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate to mediate this plasticity as it participates in neuronal remodeling and is expressed by some mature cortical interneurons, which have reduced dendritic arborization, spine density, and synaptic input. To study the connectivity of the dendritic spines of interneurons and the influence of PSA-NCAM on their dynamics, we have analyzed these structures in a subpopulation of fluorescent spiny interneurons in the hippocampus of glutamic …
Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice
2012
International audience; Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opio…
Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons
2014
Novel hypotheses suggest that antidepressants, such as the selective serotonin reuptake inhibitor fluoxetine, induce neuronal structural plasticity, resembling that of the juvenile brain, although the underlying mechanisms of this reopening of the critical periods still remain unclear. However, recent studies suggest that inhibitory networks play an important role in this structural plasticity induced by fluoxetine. For this reason we have analysed the effects of a chronic fluoxetine treatment in the hippocampus and medial prefrontal cortex (mPFC) of transgenic mice displaying eGFP labelled interneurons. We have found an increase in the expression of molecules related to critical period pla…
Depletion of polysialic acid from neural cell adhesion molecule (PSA-NCAM) increases CA3 dendritic arborization and increases vulnerability to excito…
2012
Chronic immobilization stress (CIS) shortens apical dendritic trees of CA3 pyramidal neurons in the hippocampus of the male rat, and dendritic length may be a determinant of vulnerability to stress. Expression of the polysialylated form of neural cell adhesion molecule (PSA-NCAM) in the hippocampal formation is increased by stress, while PSA removal by Endo-neuraminidase-N (endo-N) is known to cause the mossy fibers to defasciculate and synapse ectopically in their CA3 target area. We show here that enzymatic removal of PSA produced a remarkable expansion of dendritic arbors of CA3 pyramidal neurons, with a lesser effect in CA1. This expansion eclipsed the CIS-induced shortening of CA3 dend…
Membrane potential-dependent binding of polysialic acid to lipid monolayers and bilayers
2013
AbstractPolysialic acids are linear polysaccharides composed of sialic acid monomers. These polyanionic chains are usually membrane-bound, and are expressed on the surfaces of neural, tumor and neuroinvasive bacterial cells. We used toluidine blue spectroscopy, the Langmuir monolayer technique and fluorescence spectroscopy to study the effects of membrane surface potential and transmembrane potential on the binding of polysialic acids to lipid bilayers and monolayers. Polysialic acid free in solution was added to the bathing solution to assess the metachromatic shift in the absorption spectra of toluidine blue, the temperature dependence of the fluorescence anisotropy of DPH in liposomes, t…
Biophysical Characterization of Polysialic Acid—Membrane Nanosystems
2019
Polysialic acid (polySia) is a long, membrane-bound, polyanionic polymer (with the degree of polymerization, DP, up to 400) of negatively charged sialic acid monomers. Biological roles of polySia are based on its ability to modulate repulsive and attractive interactions, and its ability to modulate membrane surface charge density, pH at the membrane surface, and membrane potentials. PolySia is used in anti-bacterial and anti-cancer therapies, and in neural tissue repair. Hydrophobically-modified polySia chains can form nano-structures (micelles or liposomes) with high stability and low toxicity for drug delivery. The analysis, based on the Goldman-Hodgkin-Katz equation, of transmembrane pot…
Evaluation of polysialic acid in the diagnosis of Wilms' tumor. A comparative study on urinary tract tumors and non-neuroendocrine tumors.
1988
The polysialic acid moiety of the neural cell adhesion molecule has been shown to represent an onco-developmental antigen which can be detected in both embryonic human kidney and Wilms’ tumor but not in normal adult human kidney. In the present comparative study, Wilms’ tumors, clear cell (bone-metastasizing) sarcomas of kidney, cystic nephromas, renal cell carcinomas, transitional cell carcinomas and papillomas of the renal pelvis, ureter and urinary bladder (as well normal transitional epithelium from these regions), Ewing sarcomas, hepatoblastomas, rhabdomyosarcomas, and carcinomas of the stomach, colon, exocrine pancreas, lung, and esophagus, were investigated immunohistochemically for …
The effect of long-chain bases on polysialic acid-mediated membrane interactions
2011
AbstractNegatively-charged polysialic acid (polySia) chains are usually membrane-bound and are often expressed on the surface of neuroinvasive bacterial cells, neural cells, and tumor cells. PolySia can mediate both repulsive and attractive cis interactions between membrane components, and trans interactions between membranes. Positively-charged long-chain bases are widely present in cells, are often localized in membranes and can function as bioactive lipids. Here we use Langmuir monolayer technique, fluorescence spectroscopy and electron microscopy of lipid vesicles to study the role of a simple long-chain base, octadecylamine (ODA), in both cis and trans interactions mediated by polySia …
In vitro differentiation of E-N-CAM expressing rat neural precursor cells isolated by FACS during prenatal development
1994
Most fetal rat brain cells expressing the embryonal, highly sialylated form of the cell adhesion molecule N-CAM (E-N-CAM) are precursor cells, as judged from the absence of marker molecules specific for mature neural cell types. However, the detection of E-N-CAM+ cells in frozen sections does not provide information on the lineage-specific differentiation of these cells during development. To investigate their differentiation behaviour in vitro, E-N-CAM+ cells were isolated at different times of brain development by fluorescence-activated cell sorting (FACS), using a monoclonal antibody (Mab RB21-7) which specifically recognizes polysialic acid (PSA) residues on E-N-CAM. Double-immunofluore…
Membrane oligo- and polysialic acids
2011
AbstractPolysialic acid (polySia) and oligosialic acid (oligoSia) chains are linear polysaccharides composed of sialic acid monomers. The majority of biological poly/oligoSia chains are bound to membranes. There is a large diversity of membrane poly/oligoSia in terms of chain length, occurrence, biological function, and the mode of membrane attachment. Poly/oligoSia can be anchored to a membrane via a phospholipid (polySia in bacteria), a glycosphingolipid (oligoSia in gangliosides), an integral membrane glycoprotein, or a glycoprotein attached to a membrane via glycosylphosphatidylinositol. In eukaryotic cells, the attachment of a poly/oligoSia chain to the membrane anchor is usually throu…