Search results for "POTENTIATION"
showing 10 items of 116 documents
Temporal profiling of an acute stress-induced behavioral phenotype in mice and role of hippocampal DRR1.
2018
Abstract Understanding the neurobiological mechanisms underlying the response to an acute stressor may provide novel insights into successful stress-coping strategies. Acute behavioral stress-effects may be restricted to a specific time window early after stress-induction. However, existing behavioral test batteries typically span multiple days or even weeks, limiting the feasibility for a broad behavioral analysis following acute stress. Here, we designed a novel comprehensive behavioral test battery in male mice that assesses multiple behavioral dimensions within a sufficiently brief time window to capture acute stress-effects and its temporal profile. Using this battery, we investigated …
Passive exposure to speech sounds induces long-term memory representations in the auditory cortex of adult rats
2016
AbstractExperience-induced changes in the functioning of the auditory cortex are prominent in early life, especially during a critical period. Although auditory perceptual learning takes place automatically during this critical period, it is thought to require active training in later life. Previous studies demonstrated rapid changes in single-cell responses of anesthetized adult animals while exposed to sounds presented in a statistical learning paradigm. However, whether passive exposure to sounds can form long-term memory representations remains to be demonstrated. To investigate this issue, we first exposed adult rats to human speech sounds for 3 consecutive days, 12 h/d. Two groups of …
PTEN recruitment controls synaptic and cognitive function in Alzheimer's models
2016
Dyshomeostasis of amyloid-β peptide (Aβ) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aβ appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aβ-induced depression. Mechanistically, Aβ triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN kno…
2019
Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burs…
Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory
2019
The notion of "immune privilege" of the brain has been revised to accommodate its infiltration, at steady state, by immune cells that participate in normal neurophysiology. However, the immune mechanisms that regulate learning and memory remain poorly understood. Here, we show that noninflammatory interleukin-17 (IL-17) derived from a previously unknown fetal-derived meningeal-resident γδ T cell subset promotes cognition. When tested in classical spatial learning paradigms, mice lacking γδ T cells or IL-17 displayed deficient short-term memory while retaining long-term memory. The plasticity of glutamatergic synapses was reduced in the absence of IL-17, resulting in impaired long-term poten…
Changes in Serine Racemase-Dependent Modulation of NMDA Receptor: Impact on Physiological and Pathological Brain Aging
2018
International audience; The N-methyl-D-Aspartate glutamate receptors (NMDARs) are pivotal for the functional and morphological plasticity that are required in neuronal networks for efficient brain activities and notably for cognitive-related abilities. Because NMDARs are heterogeneous in subunit composition and associated with multiple functional regulatory sites, their efficacy is under the tonic influence of numerous allosteric modulations, whose dysfunction generally represents the first step generating pathological states. Among the enzymatic candidates, serine racemase (SR) has recently gathered an increasing interest considering that it tightly regulates the production of D-serine, an…
Effects of PSA Removal from NCAM on the Critical Period Plasticity Triggered by the Antidepressant Fluoxetine in the Visual Cortex.
2016
Neuronal plasticity peaks during critical periods of postnatal development and is reduced towards adulthood. Recent data suggests that windows of juvenile-like plasticity can be triggered in the adult brain by antidepressant drugs such as Fluoxetine. Although the exact mechanisms of how Fluoxetine promotes such plasticity remains unknown, several studies indicate that inhibitory circuits play an important role. The polysialylated form of the neural cell adhesion molecules (PSA-NCAM) has been suggested to mediate the effects of Fluoxetine and it is expressed in the adult brain by mature interneurons. Moreover, the enzymatic removal of PSA by neuroaminidase-N not only affects the structure of…
Optical activation of TrkB neurotrophin receptor in mouse ventral hippocampus promotes plasticity and facilitates fear extinction
2021
AbstractSuccessful extinction of traumatic memories depends on neuronal plasticity in the fear extinction network. However, the mechanisms involved in the extinction process remain poorly understood. Here, we investigated the fear extinction network by using a new optogenetic technique that allows temporal and spatial control of neuronal plasticity in vivo. We optimized an optically inducible TrkB (CKII-optoTrkB), the receptor of the brain-derived neurotrophic factor, which can be activated upon blue light exposure to increase plasticity specifically in pyramidal neurons. The activation of CKII-optoTrkB facilitated the induction of LTP in Schaffer collateral-CA1 synapses after brief theta-b…
Psychophysical evidence for long-term potentiation of C-fiber and Adelta-fiber pathways in humans by analysis of pain descriptors.
2007
Long-term potentiation of human pain perception (nociceptive LTP) to single electrical test stimuli was induced by high-frequency stimulation (HFS) of cutaneous nociceptive afferents. Numerical pain ratings and a list of sensory pain descriptors disclosed the same magnitude of nociceptive LTP (23% increase for >60 min, P < 0.001), whereas affective pain descriptors were not significantly enhanced. Factor analysis of the sensory pain descriptors showed that facilitation was restricted to two factors characterized by hot and burning (+41%) and piercing and stinging (+21%, both P < 0.01), whereas a factor represented by throbbing and beating was not significantly increased (+9%, P = …
The role of heterosynaptic facilitation in long-term potentiation (LTP) of human pain sensation
2008
Long-term potentiation (LTP) of nociceptive synaptic transmission induced by high-frequency electrical stimulation (HFS) predominantly modulates natural somatosensory perceptions mediated by Adelta- and Abeta-fibers in humans at the site of conditioning stimulation. The relative contribution of homo- and heterosynaptic mechanisms underlying those perceptual changes remained unclear. We therefore compared changes of the somatosensory profile between a conditioned skin site (homotopic zone) and an area adjacent to conditioning HFS (heterotopic zone). HFS of the ventral forearm in 24 healthy subjects (mean pain 41/100) led to an abrupt increase of pain to single electrical test stimuli (pain a…