Search results for "PPG"

showing 10 items of 169 documents

"Figure 11" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 60-88% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 8" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron RdA 0-20% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 9" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 20-40% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 7" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 0-100% d+Au collisions. The nuclear modification factors $R_{dA}$ and $R_{AA}$ for minimum bias $d$+Au and Au+Au collisions, for the $\pi^{0}$ and $e^{\pm}_{HF}$. The two boxes on the right side of the plot represent the global uncertainties in the $d$+Au (left) and Au+Au (right) values of $N_{coll}$ . An additional common global scaling uncertainty of 9.7% on $R_{dA}$ and $R_{AA}$ from the $p+p$ reference data is omitted for clarity.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figures 3-6" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron yield, $d$+Au $\implies$ CHARGED X. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 10" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 40-60% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figures 1-2" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron yield, Run-8 $p$ + $p$, $d$+Au collisions. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Table IV" of "Nuclear matter effects on $J/\psi$ production in asymmetric Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV"

2023

Nuclear modification factor ($R_{AA}$) at forward (1.2<$y$<2.2 Cu-going) and backward (-2.2<$y$<-1.2 Au-going) rapidity and forward/backward ratio as a function of centrality (%).

200.0Cu Au --> CHARGED Xppg163
researchProduct

Adaptive scheduling of acceleration and gyroscope for motion artifact cancelation in photoplethysmography

2022

Background and objective: Recently, various algorithms have been introduced using wrist-worn photo-plethysmography (PPG) to provide high accuracy of instantaneous heart rate (HR) estimation, including during high-intensity exercise. Most studies focus on using acceleration and/or gyroscope signals for the motion artifact (MA) reference, which attenuates or cancels out noise from the MA-corrupted PPG signals. We aim to open and pave the path to find an appropriate MA reference selection for MA cancelation in PPG.Methods: We investigated how the acceleration and gyroscope reference signals correlate with the MAs of the distorted PPG signals and derived both mathematically and experimentally a…

Adaptive motion artifact reference selectionInstantaneous heart rate (HR)Gyroscope signalAccelerationSignal Processing Computer-AssistedHealth InformaticsSettore ING-INF/01 - ElettronicaComputer Science ApplicationsAcceleration signalMotionHeart RateSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaReflectance-type photoplethysmography (PPG)PhotoplethysmographyArtifactsAlgorithmsSoftwareComputer Methods and Programs in Biomedicine
researchProduct

A methodological approach in the evaluation of the efficacy of treatments for the dimensional stabilisation of waterlogged archaeological wood

2010

Abstract The aim of the work is to set up a methodological approach to verify the effectiveness of the treatments of decayed waterlogged archaeological wood and to point out the proper thermo-hygrometric conditions for its preservation after treatment. The treatments were performed on wood samples of maritime pine (Pinus pinaster Aiton), oak (Quercus sp. caducifolia), elm (Ulmus cf. minor) and strawberry tree (Arbutus unedo L.), obtained from stems pertaining to the original vegetation found in the excavation site of the Ancient Ships in Pisa (Italy), and dated from seventh century BC to second century AD The utilised products were: Polyethylene Glycols (PEG) of various molecular weights, a…

ArcheologyDiagnosis on woodMaterials scienceKlucelMaterials Science (miscellaneous)ConservationSettore CHIM/12 - Chimica Dell'Ambiente E Dei Beni CulturaliConsolidantsConsolidantSpectroscopyArbutus unedoSettore CHIM/02 - Chimica FisicabiologyTreatmentsWaterlogged archaeological woodTrehaloseVegetationDecaybiology.organism_classificationArchaeologyPEGTreatmentStrawberry treeChemistry (miscellaneous)Pinus pinasterPPGGeneral Economics Econometrics and FinanceAfter treatment
researchProduct