Search results for "PROTEASES"
showing 10 items of 196 documents
Development of a New Antileishmanial Aziridine-2,3-Dicarboxylate-Based Inhibitor with High Selectivity for Parasite Cysteine Proteases
2015
ABSTRACT Leishmaniasis is one of the major neglected tropical diseases of the world. Druggable targets are the parasite cysteine proteases (CPs) of clan CA, family C1 (CAC1). In previous studies, we identified two peptidomimetic compounds, the aziridine-2,3-dicarboxylate compounds 13b and 13e, in a series of inhibitors of the cathepsin L (CL) subfamily of the papain clan CAC1. Both displayed antileishmanial activity in vitro while not showing cytotoxicity against host cells. In further investigations, the mode of action was characterized in Leishmania major . It was demonstrated that aziridines 13b and 13e mainly inhibited the parasitic cathepsin B (CB)-like CPC enzyme and, additionally, ma…
The C-terminal region of human plasma fetuin-B is dispensable for the raised-elephant-trunk mechanism of inhibition of astacin metallopeptidases
2019
© The Author(s) 2019.
Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases
2017
Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this …
Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors
2017
Abstract Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styry…
New aziridine-based inhibitors of cathepsin L-like cysteine proteases with selectivity for the Leishmania cysteine protease LmCPB2.8
2018
Abstract In the present work a series of aziridine-2,3-dicarboxylate inhibitors of papain-like cysteine proteases was designed, synthesized and tested. The compounds displayed selectivity for the parasitic protozoon Leishmania mexicana cathepsin L-like cysteine protease LmCPB2.8. The computational methods of homology modelling and molecular docking predicted some significant differences in the S2 pocket of LmCPB2.8 and cruzain, a related enzyme from Trypanosoma cruzi. Due to the presence of Tyr209 in LmCPB2.8 rather than Glu208 in cruzain sterically demanding, lipophilic ester groups (inhibitor 7d, 9d, 12d and 14d) are predicted to occupy the S2 pocket of the Leishmania protease, but do not…
Searching for Chymase Inhibitors among Chamomile Compounds Using a Computational-Based Approach
2018
Inhibitors of chymase have good potential to provide a novel therapeutic approach for the treatment of cardiovascular diseases. We used a computational approach based on pharmacophore modeling, docking, and molecular dynamics simulations to evaluate the potential ability of 13 natural compounds from chamomile extracts to bind chymase enzyme. The results indicated that some chamomile compounds can bind to the active site of human chymase. In particular, chlorogenic acid had a predicted binding energy comparable or even better than that of some known chymase inhibitors, interacted stably with key amino acids in the chymase active site, and appeared to be more selective for chymase than other …
Host Cell Calpains Can Cleave Structural Proteins from the Enterovirus Polyprotein
2019
Enteroviruses are small RNA viruses that cause diseases with various symptoms ranging from mild to severe. Enterovirus proteins are translated as a single polyprotein, which is cleaved by viral proteases to release capsid and nonstructural proteins. Here, we show that also cellular calpains have a potential role in the processing of the enteroviral polyprotein. Using purified calpains 1 and 2 in an in vitro assay, we show that addition of calpains leads to an increase in the release of VP1 and VP3 capsid proteins from P1 of enterovirus B species, detected by western blotting. This was prevented with a calpain inhibitor and was dependent on optimal calcium concentration, especially for calpa…
Warhead Reactivity Limits the Speed of Inhibition of the Cysteine Protease Rhodesain.
2021
Viral and parasitic pathogens rely critically on cysteine proteases for host invasion, replication, and infectivity. Their inhibition by synthetic inhibitors, such as vinyl sulfone compounds, has emerged as a promising treatment strategy. However, the individual reaction steps of protease inhibition are not fully understood. Using the trypanosomal cysteine protease rhodesain as a medically relevant target, we design photoinduced electron transfer (PET) fluorescence probes to detect kinetics of binding of reversible and irreversible vinyl sulfones directly in solution. Intriguingly, the irreversible inhibitor, apart from its unlimited residence time in the enzyme, reacts 5 times faster than …
Quantitative Proteomics Reveals Changes Induced by TIMP-3 on Cell Membrane Composition and Novel Metalloprotease Substrates
2021
Ectodomain shedding is a key mechanism of several biological processes, including cell-communication. Disintegrin and metalloproteinases (ADAMs), together with the membrane-type matrix metalloproteinases, play a pivotal role in shedding transmembrane proteins. Aberrant shedding is associated to several pathological conditions, including arthritis. Tissue inhibitor of metalloproteases 3 (TIMP-3), an endogenous inhibitor of ADAMs and matrix metalloproteases (MMPs), has been proven to be beneficial in such diseases. Thus, strategies to increase TIMP-3 bioavailability in the tissue have been sought for development of therapeutics. Nevertheless, high levels of TIMP-3 may lead to mechanism-based …
Is proteomics of value in cardiovascular risk assessment?
2019
Purpose of review To briefly summarize recently published evidence in the field of cardiovascular proteomics, focusing on its ability to improve cardiovascular risk stratification and critically discussing still open and burning issues and future perspectives of proteomics research. Recent findings Several epidemiological studies have demonstrated an improvement in cardiovascular risk prediction beyond traditional risk factors by adding novel biomarkers, identified by both discovery and targeted proteomics. However, only a moderate improvement in risk discrimination over clinical variables was observed. Moreover, despite different outcomes there was also a strong overlap of identified candi…