Search results for "PROTEIN KINASE"
showing 10 items of 1188 documents
Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EG…
2020
The etiology and the molecular basis of lung adenocarcinomas (LuADs) in nonsmokers are currently unknown. Furthermore, the scarcity of available primary cultures continues to hamper our biological understanding of non-smoking-related lung adenocarcinomas (NSK-LuADs). We established patient-derived cancer cell (PDC) cultures from metastatic NSK-LuADs, including two pairs of matched EGFR-mutant PDCs before and after resistance to tyrosine kinase inhibitors (TKIs), and then performed whole-exome and RNA sequencing to delineate their genomic architecture. For validation, we analyzed independent cohorts of primary LuADs. In addition to known non-smoker-associated alterations (e.g. RET, ALK, EGFR…
MET-EGFR dimerization in lung adenocarcinoma is dependent on EGFR mtations and altered by MET kinase inhibition
2017
Advanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors (TKIs) have high response rates in patients with activating EGFR mutations, but acquired resistance is inevitable. Acquisition of the EGFR T790M mutation causes over 50% of resistance; MET amplification is also common. Preclinical data suggest synergy between MET and EGFR inhibitors. We hypothesized that EGFR-MET dimerization determines response to MET inhibition, depending on EGFR mutation status, independently of MET copy number. We tested this hypothesis by generating isogenic cell lines from NCI-H1975 cells, which co-express L858R and T790M EGFR mutations, namely H1975L858R/T790M (EGFR TKI resista…
The potential of neurotrophic tyrosine kinase (NTRK) inhibitors for treating lung cancer
2016
Abstract: Introduction: Molecular alterations in neurotrophic tyrosine kinase (NTRK) genes have been identified in several solid tumors including lung cancer. Pre-clinical and clinical evidence suggested their potential role as oncogenic drivers and predictive biomarkers for targeted inhibition, leading to the clinical development of a new class of compounds blocking the NTRK molecular pathway, which are currently undner early clinical investigation. Area covered: This review describes the biology of the NTRK pathway and its molecular alterations in lung cancer. It focuses on the pre-clinical and clinical development of emerging NTRK inhibitors, which have shown very promising activity in e…
Central nervous system involvement in ALK-rearranged NSCLC : promising strategies to overcome crizotinib resistance
2016
ABSTRACT: Introduction: ALK rearranged Non Small Cell Lung Cancers (NSCLCs) represent a distinct subgroup of patients with peculiar clinic-pathological features. These patients exhibit dramatic responses when treated with the ALK tyrosine kinase inhibitor Crizotinib, albeit Central Nervous System (CNS) activity is much less impressive than that observed against extracranial lesions. CNS involvement has become increasingly observed in these patients, given their prolonged survival. Several novel generation ALK inhibitors have been developing to increase CNS penetration and to provide more complete ALK inhibition. Areas covered: The CNS activity of Crizotinib and novel generation ALK inhibito…
CXCR7 Reactivates ERK Signaling to Promote Resistance to EGFR Kinase Inhibitors in NSCLC
2019
Abstract Although EGFR mutant–selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK–ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI–resistant persister cells. Many patients with non–small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutatio…
Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma
2016
Aberrant Hedgehog/GLI signaling has been implicated in a diverse spectrum of human cancers, but its role in lung adenocarcinoma (LAC) is still under debate. We show that the downstream effector of the Hedgehog pathway, GLI1, is expressed in 76% of LACs, but in roughly half of these tumors, the canonical pathway activator, Smoothened, is expressed at low levels, possibly owing to epigenetic silencing. In LAC cells including the cancer stem cell compartment, we show that GLI1 is activated noncanonically by MAPK/ERK signaling. Different mechanisms can trigger the MAPK/ERK/GLI1 cascade including KRAS mutation and stimulation of NRP2 by VEGF produced by the cancer cells themselves in an autocrin…
RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma
2019
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge. Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using…
Therapeutic resistance in breast cancer cells can result from deregulated EGFR signaling
2020
The epidermal growth factor receptor (EGFR) interacts with various downstream molecules including phospholipase C (PLC)/protein kinase C (PKC), Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/GSK-3, Jak/STAT and others. Often these pathways are deregulated in human malignancies such as breast cancer. Various therapeutic approaches to inhibit the activity of EGFR family members including small molecule inhibitors and monoclonal antibodies (MoAb) have been developed. A common problem with cancer treatments is the development of drug-resistance. We examined the effects of a conditionally-activated EGFR (v-Erb-B:ER) on the resistance of breast cancer cells to commonly used chemotherapeutic drugs such as doxorub…
Molecular mechanisms underlying the neuroprotective role of atrial natriuretic peptide in experimental acute ischemic stroke
2018
Abstract Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after…
ERK3/MAPK6 controls IL-8 production and chemotaxis
2020
ERK3 is a ubiquitously expressed member of the atypical mitogen activated protein kinases (MAPKs) and the physiological significance of its short half-life remains unclear. By employing gastrointestinal 3D organoids, we detect that ERK3 protein levels steadily decrease during epithelial differentiation. ERK3 is not required for 3D growth of human gastric epithelium. However, ERK3 is stabilized and activated in tumorigenic cells, but deteriorates over time in primary cells in response to lipopolysaccharide (LPS). ERK3 is necessary for production of several cellular factors including interleukin-8 (IL-8), in both, normal and tumorigenic cells. Particularly, ERK3 is critical for AP-1 signaling…