Search results for "PULSAR"
showing 9 items of 209 documents
All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems
2021
Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…
Observatory science with eXTP
2019
Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)
Resolving the Fe XXV triplet with Chandra in Centaurus X-3
2005
We present the results of a 45 ks Chandra observation of the high-mass X-ray binary Cen X-3 at orbital phases between 0.13 and 0.40 (in the eclipse post-egress phases). Here we concentrate on the study of discrete features in the energy spectrum at energies between 6 and 7 keV, that is, on the iron K alpha line region, using the High Energy Transmission Grating Spectrometer (HETGS) on board the Chandra satellite. We clearly see a K alpha neutral iron line at similar to 6.40 keV and were able to distinguish the three lines of the Fe xxv triplet at 6.61, 6.67, and 6.72 keV, with equivalent widths of 6, 9, and 5 eV, respectively. The equivalent width of the Ka neutral iron line is 13 eV, an or…
Discovery of slow X-ray pulsations in the high-mass X-ray binary 4U 2206+54
2008
Context. The source 4U 2206+54 is one of the most enigmatic high-mass X-ray binaries. In spite of intensive searches, X-ray pul- sations have not been detected in the time range 10−3–103 s. A cyclotron line at ∼30 keV has been suggested by various authors but never detected with significance. The stellar wind of the optical companion is abnormally slow. The orbital period, initially reported to be 9.6 days, disappeared and a new periodicity of 19.25 days emerged. Aims. The main objective of our RXTE monitoring of 4U 2206+54 is to study the X-ray orbital variability of the spectral and timing parameters. The new long and uninterrupted RXTE observations allow us to search for long (∼1 h) puls…
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
2017
On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…
Timing an Accreting Millisecond Pulsar: Measuring the Accretion Torque in IGR J00291+5934
2006
We performed a timing analysis of the fastest accreting millisecond pulsar IGR J00291+5934 using RXTE data taken during the outburst of December 2004. We corrected the arrival times of all the events for the orbital (Doppler) effects and performed a timing analysis of the resulting phase delays. In this way we have the possibility to study, for the first time in this class of sources, the spin-up of a millisecond pulsar as a consequence of accretion torques during the X-ray outburst. The accretion torque gives us for the first time an independent estimate of the mass accretion rate onto the neutron star, which can be compared with the observed X-ray luminosity. We also report a revised valu…
A first-order phase transition for pulsar surface
2012
In this paper, we explain the existence of a possible first-order phase transition that may occur over the external solid crust of a pulsar, by means of an interpretation of a particular formal model (drawn from Theoretical Astrophysics) whose thermodynamical phenomenology shows a possible first-order phase transition (according to Landau’s Phenomenological Theory).
Some nonlinear aspects of a pulsar magnetosphere
2006
Investigating the Structure of Vela X
2018
Vela X is the prototypical example of a pulsar wind nebula whose morphology and detailed structure have been affected by the interaction with the reverse shock of its host supernova remnant. The resulting complex of filamentary structure and mixed-in ejecta embedded in a nebula that is offset from the pulsar provides the best example we have of this middle-age state that characterizes a significant fraction of composite SNRs, and perhaps all of the large-diameter PWNe seen as TeV sources. Here we report on an XMM-Newton Large Project study of Vela X, supplemented by additional Chandra observations. Through broad spectral modeling as well as detailed spectral investigations of discrete emiss…