Search results for "Palmitoylation"

showing 10 items of 11 documents

Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications

2017

Palmitic acid (PA) has been for long time negatively depicted for its putative detrimental health effects, shadowing its multiple crucial physiological activities. PA is the most common saturated fatty acid accounting for 20–30% of total fatty acids in the human body and can be provided in the diet or synthesized endogenously via de novo lipogenesis (DNL). PA tissue content seems to be controlled around a well-defined concentration, and changes in its intake do not influence significantly its tissue concentration because the exogenous source is counterbalanced by PA endogenous biosynthesis. Particular physiopathological conditions and nutritional factors may strongly induce DNL, resulting i…

0301 basic medicinemedicine.medical_specialtyPhysiologyReviewBiologyprotein palmitoylationlcsh:PhysiologyPalmitic acidlung surfactant03 medical and health scienceschemistry.chemical_compoundPhysiology (medical)Internal medicinemedicinepalmitic acidProtein palmitoylationpalmitoylethanolamidechemistry.chemical_classificationPalmitoylethanolamidelcsh:QP1-981Metabolism030104 developmental biologyEndocrinologyde novo lipogenesischemistryLipogenesisSaturated fatty acidHomeostasisPolyunsaturated fatty acidFrontiers in Physiology
researchProduct

Correlations in palmitoylation and multiple phosphorylation of rat bradykinin B2 receptor in Chinese hamster ovary cells.

1999

Rat bradykinin B2 receptor from unstimulated Chinese hamster ovary cells transfected with the corresponding cDNA has been isolated, and subsequent mass spectrometric analysis of multiple phosphorylated species and of the palmitoylation attachment site is described. Bradykinin B2 receptor was isolated on oligo(dT)-cellulose using N-(epsilon-maleimidocaproyloxy)succinimide-Met-Lys-bradykinin coupled to a protected (dA)30-mer. This allowed a one-step isolation of the receptor on an oligo(dT)-cellulose column via variation solely of salt concentration. After enzymatic in-gel digestion, matrix-assisted laser desorption ionization and electrospray ion trap mass spectrometric analysis of the isola…

PhosphopeptidesReceptor Bradykinin B2AcylationMolecular Sequence DataPalmitatesCHO CellsTransfectionBiochemistryMass SpectrometryCell membranePhosphoserinePalmitoylationCricetinaemedicineAnimalsTrypsinAmino Acid SequenceBradykinin receptorPhosphorylationReceptorPhosphotyrosineMolecular BiologyChemistryChinese hamster ovary cellReceptors BradykininCell BiologyTransfectionPeptide FragmentsRatsmedicine.anatomical_structurePhosphothreonineBiochemistryPhosphorylationSignal transductionProtein Processing Post-TranslationalThe Journal of biological chemistry
researchProduct

Palmitoylation of Pulmonary Surfactant Protein SP-C Is Critical for Its Functional Cooperation with SP-B to Sustain Compression/Expansion Dynamics in…

2010

AbstractRecent data suggest that a functional cooperation between surfactant proteins SP-B and SP-C may be required to sustain a proper compression-expansion dynamics in the presence of physiological proportions of cholesterol. SP-C is a dually palmitoylated polypeptide of 4.2 kDa, but the role of acylation in SP-C activity is not completely understood. In this work we have compared the behavior of native palmitoylated SP-C and recombinant nonpalmitoylated versions of SP-C produced in bacteria to get a detailed insight into the importance of the palmitic chains to optimize interfacial performance of cholesterol-containing surfactant films. We found that palmitoylation of SP-C is not essenti…

LipoylationSus scrofaBiophysicsAcute respiratory distressModels Biologicallaw.inventionAcylationchemistry.chemical_compoundPalmitoylationPulmonary surfactantlawAnimalsPulmonary Surfactant-Associated Protein BChemistryCholesterolMembraneTemperaturePulmonary SurfactantsBiofísicaPulmonary Surfactant-Associated Protein CBiomechanical PhenomenaCholesterolBiochemistryBiophysicsRecombinant DNAlipids (amino acids peptides and proteins)AdsorptionProteïnes
researchProduct

Palmitoylation of Endothelin Receptor A

1996

Post-translational modifications such as phosphorylation and palmitoylation play important roles for the function and regulation of receptors coupled to heterotrimeric guanyl nucleotide-binding proteins. Here we demonstrate that the human endothelin receptor A (ETA) incorporates [3H]palmitate. Mutation of a cluster of five cysteine residues present in the cytoplasmic tail of ETA into serine or alanine residues completely prevented palmitoylation of the receptor. The ligand binding affinity of the non-palmitoylated ETA mutants was essentially unchanged as compared to the palmitoylated wild type ETA suggesting that the replacement of the cysteine residues did not alter the overall structure o…

Endothelin receptor type APhospholipase CWild typeCell BiologyBiologyBiochemistryBiochemistryPalmitoylationHeterotrimeric G proteincardiovascular systemSignal transductionEndothelin receptorReceptorMolecular BiologyJournal of Biological Chemistry
researchProduct

Palmitoylation is a post-translational modification of Alix regulating the membrane organization of exosome-like small extracellular vesicles.

2018

Abstract Background Virtually all cell types have the capacity to secrete nanometer-sized extracellular vesicles, which have emerged in recent years as potent signal transducers and cell-cell communicators. The multifunctional protein Alix is a bona fide exosomal regulator and skeletal muscle cells can release Alix-positive nano-sized extracellular vesicles, offering a new paradigm for understanding how myofibers communicate within skeletal muscle and with other organs. S-palmitoylation is a reversible lipid post-translational modification, involved in different biological processes, such as the trafficking of membrane proteins, achievement of stable protein conformations, and stabilization…

0301 basic medicineAlix (also known as PDCD6IP)Protein ConformationLipoylationLipid BilayersBiophysicsSkeletal muscle cellsCell Cycle ProteinsExosomesBiochemistryExosomeTetraspanin 29Cell Line03 medical and health sciencesExtracellular VesiclesPalmitoylationTetraspaninExtracellularHumansLipid bilayerMuscle SkeletalMolecular BiologyCells CulturedEndosomal Sorting Complexes Required for TransportChemistryVesicleCalcium-Binding ProteinsCell MembraneExtracellular vesicleTetraspaninSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cell biologyExosomeProtein Transport030104 developmental biologyS-palmitoylationMembrane proteinextracellular vesicles (EVs)Skeletal muscle cellProtein Processing Post-TranslationalProtein BindingSignal TransductionBiochimica et biophysica acta. General subjects
researchProduct

Intercellular Communication in Skeletal Muscle Stem Cell Niche: Focus on extracellular vesicles and secreted signals

AlixS-palmitoylationmuscleexosome; Alix; S-palmitoylation; muscle; self-renewal; intercellular communication;intercellular communicationexosomeself-renewal
researchProduct

Post-Translational Regulation of Fas/CD95 in Cell Death and Survival: Role of Nitric Oxide

2010

chemistry.chemical_compoundBiochemistryPalmitoylationChemistryNitrationGeneticsMolecular MedicinePhosphorylationPost-translational regulationFas receptorBiochemistryBiotechnologyNitric oxideForum on Immunopathological Diseases and Therapeutics
researchProduct

A Membrane-Bound Vertebrate Globin

2011

The family of vertebrate globins includes hemoglobin, myoglobin, and other O(2)-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio) globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and m…

Protein StructureLipoylationGreen Fluorescent ProteinsMolecular Sequence Datalcsh:MedicineHemeBiochemistryCell membranechemistry.chemical_compoundModel OrganismsPalmitoylationhemic and lymphatic diseasesmedicineAnimalsRespiratory functionAmino Acid SequenceGlobinlcsh:ScienceProtein InteractionsBiologyZebrafishZebrafishMyristoylationHemoproteinsMultidisciplinarySequence Homology Amino Acidbiologylcsh:RCell MembraneMembrane ProteinsProteinsGene Expression Regulation DevelopmentalAnimal Modelsbiology.organism_classificationRecombinant ProteinsGlobinsGlobin foldOxygenmedicine.anatomical_structureBiochemistryMyoglobinchemistryImmunoglobulin GCytochemistrylcsh:QRabbitsResearch ArticleSubcellular FractionsPLoS ONE
researchProduct

The Extracellular δ-Domain is Essential for the Formation of CD81 Tetraspanin Webs

2014

AbstractCD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, ins…

virusesLipoylationBiophysicschemical and pharmacologic phenomenaPlasma protein bindingBiologyTetraspanin 28Jurkat CellsProtein structurePalmitoylationTetraspaninViral entryExtracellularHumansComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]MembranesHep G2 Cellsbiochemical phenomena metabolism and nutritionCell biologyProtein Structure TertiaryProtein MultimerizationProtein Processing Post-TranslationalFunction (biology)CD81Protein Binding
researchProduct

Structural analysis of the lipid A isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides[S]

2010

Hafnia alvei, a Gram-negative bacterium, is an opportunistic pathogen associated with mixed hospital infections, bacteremia, septicemia, and respiratory diseases. The majority of clinical symptoms of diseases caused by this bacterium have a lipopolysaccharide (LPS, endotoxin)-related origin. The lipid A structure affects the biological activity of endotoxins predominantly. Thus, the structure of H. alvei lipid A was analyzed for the first time. The major form, asymmetrically hexa-acylated lipid A built of beta-D-GlcpN4P-(1-->6)-alpha-D-GlcpN1P substituted with (R)-14:0(3-OH) at N-2 and O-3, 14:0(3-(R)-O-12:0) at N-2', and 14:0(3-(R)-O-14:0) at O-3', was identified by ESI-MS(n) and MALDI-tim…

Spectrometry Mass Electrospray IonizationendotoxinLipopolysaccharideAcylationOligosaccharidesQD415-436BiochemistryMicrobiologyLipid Achemistry.chemical_compoundOpportunistic pathogenEndocrinologyPalmitoylationEscherichiapalmitoylationmass spectrometryPolish Collection of MicroorganismsbiologyHafnia alveiBiological activityCell Biologybiology.organism_classificationOxygenHafnia alveiLipid AchemistrySpectrometry Mass Matrix-Assisted Laser Desorption-Ionizationlipids (amino acids peptides and proteins)BacteriaResearch ArticleJournal of Lipid Research
researchProduct