Search results for "Paracytophagy"
showing 2 items of 2 documents
Rot1 plays an antagonistic role to Clb2 in actin cytoskeleton dynamics throughout the cell cycle.
2007
ROT1 is an essential gene whose inactivation causes defects in cell cycle progression and morphogenesis in budding yeast. Rot1 affects the actin cytoskeleton during the cell cycle at two levels. First, it is required for the maintenance of apical growth during bud growth. Second, Rot1 is necessary to polarize actin cytoskeleton to the neck region at the end of mitosis; because of this defect, rot1 cells do not properly form a septum to complete cell division. The inability to polarize the actin cytoskeleton at the end of mitosis is not due to a defect in the recruitment of the polarisome scaffold protein Spa2 or the actin cytoskeleton regulators Cdc42 and Cdc24 in the neck region. Previous …
The actin-based motility of intracellularListeria monocytogenesis not controlled by small GTP-binding proteins of the Rho- and Ras-subfamilies
1999
In this study, we analyzed whether the actin-based motility of intracellular Listeria monocytogenes is controlled by the small GTP-binding proteins of the Rho- and Ras-subfamilies. These signalling proteins are key regulatory elements in the control of actin dynamics and their activity is essential for the maintenance of most cellular microfilament structures. We used the Clostridium difficile toxins TcdB-10463 and TcdB-1470 to specifically inactivate these GTP-binding proteins. Treatment of eukaryotic cells with either of these toxins led to a dramatic breakdown of the normal actin cytoskeleton, but did not abrogate the invasion of epithelial cells by L. monocytogenes and had no effect on …