Search results for "Parasite hosting"

showing 10 items of 306 documents

Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: value of PCR-RFLP and quantita…

2006

8 pages; International audience; Haemosporidian parasites are common in birds in which they act as an important selective pressure. While most studies so far have focused on the effect of their prevalence on host life-history traits, no study has measured the effect of parasitaemia. We developed molecular methods to detect, identify and quantify haemosporidia in 2 natural populations of the Blackbird Turdus merula. Three different parasite genotypes were found - 1 Haemoproteus and 2 Plasmodium. A PCR-RFLP screening revealed that only approximately 3% of blackbirds were free of parasites, compared to the 34% of uninfected birds estimated by blood smear screening. A quantitative PCR (q-PCR) a…

0106 biological sciencesPlasmodiumMESH: ParasitemiaMESH: Protozoan Infections AnimalMESH : Protozoan Infections AnimalMESH : PrevalenceMESH : Bird DiseasesMESH : ParasitemiaParasitemia01 natural sciencesPlasmodiumPolymerase Chain ReactionMESH: Bird Diseases030308 mycology & parasitologylaw.inventionPCR-RFLPlawGenotype[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hostingMESH: AnimalsPasseriformesProtozoan Infections AnimalMESH : Polymerase Chain ReactionPolymerase chain reactionGenetics0303 health sciencesbiologyInfectious DiseasesMESH: HaemosporidaMESH : Sensitivity and SpecificityPolymorphism Restriction Fragment Length[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitologyfield populationsprevalenceZoology010603 evolutionary biologySensitivity and SpecificityparasitaemiaApicomplexa03 medical and health sciencesparasitic diseasesAnimalsTurdus merula[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyMESH: PrevalenceMESH : Polymorphism Restriction Fragment Length[SDV.GEN]Life Sciences [q-bio]/GeneticsHost (biology)Bird DiseasesMESH: PlasmodiumMESH: Polymorphism Restriction Fragment LengthMESH: PasseriformesMESH: Polymerase Chain Reactionbiology.organism_classificationHaemosporidaMESH : PasseriformesMESH: Sensitivity and SpecificityMESH : PlasmodiumHaemoproteusVector (epidemiology)Animal Science and ZoologyParasitologyHaemoproteusMESH : AnimalsMESH : Haemosporida[ SDV.GEN ] Life Sciences [q-bio]/Geneticsreal-time PCR[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Cold water reduces the severity of parasite-inflicted damage : support for wintertime recuperation in aquatic hosts

2019

The reduction in host fitness caused by parasite infections (virulence) depends on infection intensity and the degree of damage caused per parasite. Environmental conditions can shape both virulence components, but in contrast to infection intensity, environmental impacts on per-parasite damage are poorly understood. Here, we studied the effect of ambient temperature on per-parasite damage, which is jointly determined by the ability of parasites to induce harm (per-parasite pathogenicity) and the ability of hosts to limit damage (tolerance). We experimentally exposed two salmonid species, Atlantic salmon (Salmo salar) and sea trout (Salmo trutta), to replicated genotypes of the eye fluke Di…

0106 biological sciencesPost exposureTroutSalmo salarsalmonidZoologyVirulence010603 evolutionary biology01 natural sciencesParasite loadinfektiotHost-Parasite InteractionstrematodeFish DiseasesloisetSea troutParasite hostingAnimalsParasitesSalmoEcology Evolution Behavior and SystematicssietokykytolerancebiologyHost (biology)010604 marine biology & hydrobiologyimumadotvirulenssilohikalatWatertemperaturebiology.organism_classificationkalatauditvirulenceWarm waterlämpötilaTrematoda
researchProduct

Parasite-induced behavioral change: mechanisms.

2010

Animal behavior and parasitism are more tightly linked than commonly thought. One of the most astonishing phenomena in host–parasite antagonistic interactions is ‘host manipulation,’ that is, the ability of a parasite to alter the behavior of its host in ways that appear to increase parasite fitness at the expense of host fitness. The mechanisms by which a parasite hijacks the behavior of its host have been explored using ethopharmacological and immunocytochemical approaches or carrying out a large-scale proteomic study on manipulated host’s brain. These few mechanistic studies have confirmed both the complexity of host manipulation by parasites and the importance of understanding the molec…

0106 biological sciencesSerotonin[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyProteomeParasitismBiologyBioinformatics010603 evolutionary biology01 natural sciencesRodentsTranscriptome03 medical and health sciences[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hosting[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAnimal behavior030304 developmental biology0303 health sciences[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyHost (biology)Phenotype3. Good healthCrustaceansNeuromodulatorInsectsParasiteEvolutionary biologyProteome[SDE.BE]Environmental Sciences/Biodiversity and EcologyEthopharmacologyTranscriptome[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Parasite communities in Boops boops (L.) (Sparidae) after the Prestige oil-spill: Detectable alterations

2007

Environmental pollution affects parasite populations and communities, both directly and through effects on intermediate and final hosts. In this work, we present a comparative study on the structure and composition of metazoan parasite communities in the bogue, Boops boops, from two localities (Galician coast, Spain) affected by the Prestige oil-spill (POS). We focus on the distribution of both individual parasite species and larger functional groupings by using both univariate and multivariate analyses. Our results indicate directional trends in community composition that might be related to the Prestige oil-spill disturbance of the natural coastal communities off Galicia. Endoparasite com…

0106 biological sciencesSparidaeParasitic Diseases AnimalFaunaEnvironmental pollutionAquatic ScienceOceanography01 natural sciences030308 mycology & parasitologyDisastersFish Diseases03 medical and health sciencesAbundance (ecology)PrevalenceAnimalsParasite hosting14. Life underwaterAtlantic OceanPopulation Density0303 health sciencesbiologyEcology010604 marine biology & hydrobiologyBoops boopsbiology.organism_classificationPollutionPerciformesBenthic zoneFuel OilsWater Pollutants ChemicalBoopsMarine Pollution Bulletin
researchProduct

Variation and covariation in infectivity, virulence and immunodepression in the host-parasite association Gammarus pulex-Pomphorhynchus laevis.

2009

Parasites often manipulate host immunity for their own benefit, either by exacerbating or suppressing the immune response and this may directly affect the expression of parasite virulence. However, genetic variation in immunodepression, which is a prerequisite to its evolution, and the relationship between immunodepression and virulence, have rarely been studied. Here, we investigated the variation among sibships of the acanthocephalan parasite, Pomphorhynchus laevis , in infecting and in immunodepressing its amphipod host, Gammarus pulex . We also assessed the covariation between infectivity, parasite-induced immune depression and host mortality (parasite virulence). We found that infecti…

0106 biological sciencesVirulencephenoloxidaseparasite-induced immunodepression[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyMicrobiologyAcanthocephalaHost-Parasite Interactions03 medical and health sciencesImmune systemRiversImmunityResearch articlesImmune Tolerance[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hostingAnimalsAmphipoda030304 developmental biologyGeneral Environmental ScienceInfectivity0303 health sciences[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyGeneral Immunology and MicrobiologybiologycovariationHost (biology)Monophenol MonooxygenaseGeneral Medicinebiology.organism_classificationSurvival Analysis3. Good healthacanthocephalanvirulenceGammarus pulex[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyImmunologyimmune defencesPomphorhynchus laevisFrance[SDE.BE]Environmental Sciences/Biodiversity and EcologyGeneral Agricultural and Biological Sciences[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Food stoichiometry affects the outcome of Daphnia–parasite interaction

2013

Phosphorus (P) is an essential nutrient for growth in consumers. P-limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life-table study using a Daphnia–microsporidian parasite model, feeding uninfected or infected Daphnia with either P-sufficient or P-limited algae, and assessed the impact of the two stressors on life-history traits of the host. Both infection and P-limitation negatively affected some life-history traits tested. However, under P-limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P-limited individuals died before maturation, regardless of infection. Th…

0106 biological sciencesZoology010603 evolutionary biology01 natural sciencesDaphniamicrosporidianEcological stoichiometryJuvenileParasite hostingIngestionEcology Evolution Behavior and SystematicsOriginal ResearchNature and Landscape Conservation2. Zero hungerchemistry.chemical_classificationEcologybiologyhost–parasite interactionEcologyHost (biology)010604 marine biology & hydrobiologyfungiP-deficiencybiology.organism_classificationSporemultiple stressorsEcological stoichiometrychemistryta1181Essential nutrientEcology and Evolution
researchProduct

Factors influencing infection patterns of trophically transmitted parasites among a fish community: host diet, host-parasite compatibility or both?

2011

20 pages; International audience; Parasite infection patterns were compared with the occurrence of their intermediate hosts in the diet of nine sympatric fish species in a New Zealand lake. Stomach contents and infection levels of three gastrointestinal helminth species were examined from the entire fish community. The results highlighted some links between fish host diet and the flow of trophically transmitted helminths. Stomach contents indicated that all but one fish species were exposed to these helminths through their diet. Host feeding behaviour best explained infection patterns of the trematode Coitocaecum parvum among the fish community. Infection levels of the nematode Hedruris spi…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAquatic Science010603 evolutionary biology01 natural sciences030308 mycology & parasitologyPredation03 medical and health sciencesgastrointestinal helminths[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsBody Sizehost specificityParasite hostingHelminths[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology14. Life underwaterPredatorEcology Evolution Behavior and SystematicsTrophic level[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology0303 health sciencesbiologyCoitocaecum parvumEcologyFishestrophically transmitted parasitesbiology.organism_classificationDietFertilityNematodeOviparitySympatric speciationFemaleTrematodafish diet[SDE.BE]Environmental Sciences/Biodiversity and EcologyIntroduced SpeciesNew Zealand[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisJournal of Fish Biology
researchProduct

Social interactions modulate the virulence of avian malaria infection

2013

There is an increasing understanding of the context-dependent nature of parasite virulence. Variation in parasite virulence can occur when infected individuals compete with conspecifics that vary in infection status; virulence may be higher when competing with uninfected competitors. In vertebrates with social hierarchies, we propose that these competition-mediated costs of infection may also vary with social status. Dominant individuals have greater competitive ability than competing subordinates, and consequently may pay a lower prevalence-mediated cost of infection. In this study we investigated whether costs of malarial infection were affected by the occurrence of the parasite in compet…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyCanariesMalaria Avianmedia_common.quotation_subjectVirulenceParasitismZoology010603 evolutionary biology01 natural sciencesCompetition (biology)03 medical and health sciences[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesAvian malaria[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosismedicineAnimalsParasite hostingInterpersonal Relations[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology030304 developmental biologymedia_commonSocial stress[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology0303 health sciencesBehavior AnimalCompetitionVirulenceSGS1biologySocial stressEcologyPlasmodium relictumbiology.organism_classificationmedicine.diseaseSurvival AnalysisPlasmodium relictum3. Good healthGroup livingSocial rank[ SDV.MHEP.MI ] Life Sciences [q-bio]/Human health and pathology/Infectious diseasesInfectious DiseasesHematocritAvian malariaParasitology[SDE.BE]Environmental Sciences/Biodiversity and Ecology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisSocial statusInternational Journal for Parasitology
researchProduct

Cucumispora dikerogammari n. gen. (Fungi: Microsporidia) infecting the invasive amphipod Dikerogammarus villosus: a potential emerging disease in Eur…

2010

SUMMARYDikerogammarus villosusis an invasive amphipod that recently colonized the main rivers of Central and Western Europe. Two frequent microsporidian parasites were previously detected in this species, but their taxonomic status was unclear. Here we present ultrastructural and molecular data indicating that these two parasites are in fact a single microsporidian species. This parasite shares numerous characteristics ofNosemaspp. It forms elongate spores (cucumiform), developing in direct contact with host cell cytoplasm; all developmental stages are diplokaryotic and the life cycle is monomorphic with disporoblastic sporogony. Initially this parasite was described asNosema dikerogammariO…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologySSU rDNAZoologybiological invasion[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomyphylogeny010603 evolutionary biology01 natural sciencesDikerogammarus villosusHost-Parasite InteractionsCucumispora gen. sp03 medical and health sciencesNosema dikerogammariMicroscopy Electron TransmissionRiversSpecies Specificity[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hostingAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmphipodaCucumispora gen. sp.DNA FungalRibosomal DNA030304 developmental biology0303 health sciencesLife Cycle Stages[ SDE.BE ] Environmental Sciences/Biodiversity and EcologybiologyDikerogammarus villosusSequence Analysis DNASpores Fungalbiology.organism_classificationEuropeInfectious DiseasesNosemaMicrosporidiaHost cell cytoplasmMicrosporidiaAnimal Science and ZoologyParasitologyPolar filament[SDE.BE]Environmental Sciences/Biodiversity and EcologySequence AlignmentHorizontal transmission[ SDV.BID.SPT ] Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomy[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Immunity and Virulence in Bird-Parasite Interactions.

2010

8 pages; International audience; The interaction between hosts and parasites is characterized by the evolution of reciproca adaptations aiming at reducing the cost of infection (from the host point of view) and to optimize host exploitation (from the parasite point of view). Within this co-evolutionary scenario, the immune system takes a central role. The immune system has evolved to fight off parasitic attacks. However, immune defences cannot be deployed without costs which set a limit to the protective effect of immunity. Moreover, immune defences impose strong selection pressures on the parasite and can favour the evolution of more virulent pathogen strains. In this article, we will disc…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyVirulenceBiology[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology010603 evolutionary biology01 natural sciencesimmune response03 medical and health sciencesImmune systemImmunityImmunopathology[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hostingimmunopathology[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyPathogenCoevolution030304 developmental biology0303 health sciences[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyHost (biology)biochemical phenomena metabolism and nutritioninfectionvirulence[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyEvolutionary biologyImmunologybacteriaAnimal Science and Zoology[SDE.BE]Environmental Sciences/Biodiversity and Ecology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisCoevolution
researchProduct