Search results for "Partial differential equation"

showing 10 items of 326 documents

Finite element approximation of parabolic hemivariational inequalities

1998

In this paper we introduce a finite element approximation for a parabolic hemivariational initial boundary value problem. We prove that the approximate problem is solvable and its solutions converge on subsequences to the solutions of the continuous problem

Approximation theoryControl and OptimizationPartial differential equationSignal ProcessingVariational inequalityMathematical analysisInitial value problemBoundary value problemAnalysisFinite element methodComputer Science ApplicationsMathematics
researchProduct

Qualitative Analysis of Differential, Difference Equations, and Dynamic Equations on Time Scales

2015

and Applied Analysis 3 thank Guest Editors Josef Dibĺik, Alexander Domoshnitsky, Yuriy V. Rogovchenko, Felix Sadyrbaev, and Qi-Ru Wang for their unfailing support with editorial work that ensured timely preparation of this special edition. Tongxing Li Josef Dibĺik Alexander Domoshnitsky Yuriy V. Rogovchenko Felix Sadyrbaev Qi-Ru Wang

Article SubjectDifferential equationlcsh:MathematicsApplied MathematicsFinite difference methodlcsh:QA1-939Stochastic partial differential equationNonlinear systemMultigrid methodKolmogorov equations (Markov jump process)Simultaneous equationsApplied mathematicsAnalysisNumerical partial differential equationsMathematicsAbstract and Applied Analysis
researchProduct

Minimally implicit Runge-Kutta methods for Resistive Relativistic MHD

2016

The Relativistic Resistive Magnetohydrodynamic (RRMHD) equations are a hyperbolic system of partial differential equations used to describe the dynamics of relativistic magnetized fluids with a finite conductivity. Close to the ideal magnetohydrodynamic regime, the source term proportional to the conductivity becomes potentially stiff and cannot be handled with standard explicit time integration methods. We propose a new class of methods to deal with the stiffness fo the system, which we name Minimally Implicit Runge-Kutta methods. These methods avoid the development of numerical instabilities without increasing the computational costs in comparison with explicit methods, need no iterative …

AstrofísicaHistoryResistive touchscreenPartial differential equation010308 nuclear & particles physicsExplicit and implicit methodsNumerical methods for ordinary differential equationsStiffnessMagnetohidrodinàmica01 natural sciencesComputer Science ApplicationsEducationRunge–Kutta methods0103 physical sciencesmedicineCalculusApplied mathematicsMagnetohydrodynamic driveMagnetohydrodynamicsmedicine.symptom010303 astronomy & astrophysicsMathematics
researchProduct

Operator splitting methods for American option pricing

2004

Abstract We propose operator splitting methods for solving the linear complementarity problems arising from the pricing of American options. The space discretization of the underlying Black-Scholes Scholes equation is done using a central finite-difference scheme. The time discretization as well as the operator splittings are based on the Crank-Nicolson method and the two-step backward differentiation formula. Numerical experiments show that the operator splitting methodology is much more efficient than the projected SOR, while the accuracy of both methods are similar.

Backward differentiation formulaMathematical optimizationPartial differential equationDiscretizationApplied MathematicsFinite difference methodSemi-elliptic operatorTime discretizationValuation of optionsComplementarity theoryLinear complementarity problemCrank–Nicolson methodOperator splitting methodAmerican optionMathematicsApplied Mathematics Letters
researchProduct

Theoretical study of a Bénard Marangoni problem

2011

[EN] In this paper we prove the existence of strong solutions for the stationary Benard-Marangoni problem in a finite domain flat on the top, bifurcating from the basic heat conductive state. The Benard-Marangoni problem is a physical phenomenon of thermal convection in which the effects of buoyancy and surface tension are taken into account. This problem is modelled with a system of partial differential equations of the type Navier-Stokes and heat equation. The boundary conditions include crossed boundary conditions involving tangential derivatives of the temperature and normal derivatives of the velocity field. To define tangential derivatives at the boundary, intended in the trace sense,…

Bénard–Marangoni problemPartial differential equationMarangoni effectIncompressible Boussinesq–Navier–Stokes equationsApplied MathematicsMathematical analysisBoundary (topology)INGENIERIA AEROESPACIALWeak formulationDomain (mathematical analysis)Physics::Fluid DynamicsIncompressible Boussinesq-Navier-Stokes equationsFluid dynamicsFree boundary problemThermal convectionBenard-Marangoni problemHeat equationBifurcationBoundary value problemAnalysisMathematics
researchProduct

PDE triangular Bézier surfaces: Harmonic, biharmonic and isotropic surfaces

2011

We approach surface design by solving second-order and fourth-order Partial Differential Equations (PDEs). We present many methods for designing triangular Bézier PDE surfaces given different sets of prescribed control points and including the special cases of harmonic and biharmonic surfaces. Moreover, we introduce and study a second-order and a fourth-order symmetric operator to overcome the anisotropy drawback of the harmonic and biharmonic operators over triangular Bézier surfaces. © 2010 Elsevier B.V. All rights reserved.

Bézier surfaceSurface (mathematics)Bézier surfacePartial differential equationLaplacian operatorPDE surfaceApplied MathematicsMathematical analysisHarmonic (mathematics)Bi-Laplacian operatorBiharmonic Bézier surfaceIsotropyComputational MathematicsPDE surfaceBiharmonic equationLaplace operatorMathematics
researchProduct

A third order partial differential equation for isotropic boundary based triangular Bézier surface generation

2011

Abstract We approach surface design by solving a linear third order Partial Differential Equation (PDE). We present an explicit polynomial solution method for triangular Bezier PDE surface generation characterized by a boundary configuration. The third order PDE comes from a symmetric operator defined here to overcome the anisotropy drawback of any operator over triangular Bezier surfaces.

Bézier surfaceSurface (mathematics)PolynomialPartial differential equationPDE surfaceOperator (physics)Applied MathematicsMathematical analysisFirst-order partial differential equationBoundary (topology)Partial differential equationIsotropyPDE surfaceComputational MathematicsComputer Science::GraphicsBézier triangleExplicit solutionMathematicsJournal of Computational and Applied Mathematics
researchProduct

Explicit Bézier control net of a PDE surface

2017

The PDE under study here is a general fourth-order linear elliptic Partial Differential Equation. Having prescribed the boundary control points, we provide the explicit expression of the whole control net of the associated PDE Bézier surface. In other words, we obtain the explicit expressions of the interior control points as linear combinations of free boundary control points. The set of scalar coefficients of these combinations works like a mould for PDE surfaces. Thus, once this mould has been computed for a given degree, real-time manipulation of the resulting surfaces becomes possible by modifying the prescribed information. The work was partially supported by Spanish Ministry of Econo…

Bézier surfaceSurface GenerationPartial differential equationPDE surfaceScalar (mathematics)Mathematical analysis020207 software engineeringBézier curve010103 numerical & computational mathematics02 engineering and technologyBiharmonic Bézier surfaceBiharmonic surface01 natural sciencesComputational MathematicsPDE surfacePartial Differential EquationComputational Theory and MathematicsElliptic partial differential equationExplicit solutionModeling and Simulation0202 electrical engineering electronic engineering information engineering0101 mathematicsLinear combinationTensor product Bézier surfaceMathematicsComputers & Mathematics with Applications
researchProduct

On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms

2010

We study one class of nonlinear fluid dynamic models with impulse source terms. The model consists of a system of two hyperbolic conservation laws: a nonlinear conservation law for the goods density and a linear evolution equation for the processing rate. We consider the case when influx-rates in the second equation take the form of impulse functions. Using the vanishing viscosity method and the so-called principle of fictitious controls, we show that entropy solutions to the original Cauchy problem can be approximated by optimal solutions of special optimization problems.

Cauchy problemConservation lawOptimization problemEntropy solutionsArticle SubjectVanishing viscosity methodMathematical analysisNonlinear fluid dynamicmodelsNonlinear conservation lawlcsh:QA75.5-76.95Computer Science ApplicationsNonlinear systemlcsh:TA1-2040Modeling and SimulationEvolution equationNonlinear fluid dynamicmodels; Vanishing viscosity method; Principle of fictitious controls; Entropy solutionsPrinciple of fictitious controlslcsh:Electronic computers. Computer scienceElectrical and Electronic Engineeringlcsh:Engineering (General). Civil engineering (General)Hyperbolic partial differential equationEntropy (arrow of time)MathematicsJournal of Control Science and Engineering
researchProduct

A strongly degenerate quasilinear elliptic equation

2005

Abstract We prove existence and uniqueness of entropy solutions for the quasilinear elliptic equation u - div a ( u , Du ) = v , where 0 ⩽ v ∈ L 1 ( R N ) ∩ L ∞ ( R N ) , a ( z , ξ ) = ∇ ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ∥ ξ ∥ → ∞ , satisfying other additional assumptions. In particular, this class of equations includes the elliptic problems associated to a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics, respectively. In a second part of this work, using Crandall–Liggett's iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding…

Cauchy problemElliptic curveDiffusion equationElliptic partial differential equationApplied MathematicsMathematical analysisDegenerate energy levelsHeat equationUniquenessConvex functionAnalysisMathematicsMathematical physicsNonlinear Analysis: Theory, Methods & Applications
researchProduct