Search results for "Particle Tracking Detectors"

showing 7 items of 27 documents

Combined performance studies for electrons at the 2004 ATLAS combined test-beam

2010

In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Ra…

Physics::Instrumentation and DetectorsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Transition radiation detectorsElectronsddc:500.201 natural sciencesParticle identificationNuclear physicsCalorimetersAtlas (anatomy)Particle tracking detectors0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationDetectors de radiacióMathematical PhysicsPhysicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsDetectorCalorimetermedicine.anatomical_structureTransition radiationBeamlineHigh Energy Physics::ExperimentBeam (structure)
researchProduct

Performance study of a 3×1×1 m3 dual phase liquid Argon Time Projection Chamber exposed to cosmic rays

2021

This work would not have been possible without the support of the Swiss National Science Foundation, Switzerland; CEA and CNRS/IN2P3, France; KEK and the JSPS program, Japan; Ministerio de Ciencia e Innovacion in Spain under grants FPA2016-77347-C2, SEV-2016-0588 and MdM-2015-0509, Comunidad de Madrid, the CERCA program of the Generalitat de Catalunya and the fellowship (LCF/BQ/DI18/11660043) from "La Caixa" Foundation (ID 100010434); the Programme PNCDI III, CERN-RO, under Contract 2/2020, Romania; the U.S. Department of Energy under Grant No. DE-SC0011686. This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement no. 654…

Physics::Instrumentation and DetectorsLibrary scienceargon: gas01 natural sciences7. Clean energyNeutrino detectorArgon gasPolitical scienceParticle tracking detectors0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]media_common.cataloged_instanceNeutrino detectors[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]European union010306 general physicsInstrumentationMathematical Physicsmedia_common010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)time projection chamber: liquid argonParticle tracking detectorTime projection chambercosmic radiationLarge detector systems for particle and astroparticle physicyield: stabilityLiquid argonperformance
researchProduct

Performance study of a 3×1×1 m3 dual phase liquid Argon Time Projection Chamber exposed to cosmic rays

2021

We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3×1×1 m3) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study of the TPC's response, its main detector parameters and performance. The results are important for the understanding and further developments of the dual-phase technology, thanks to the verification of key aspects, such as the extraction of electrons from liquid to gas and their amplification through the entire one square metre readout plain, gain stability, purity and charge sharing between readout views. peerReviewed

Physics::Instrumentation and Detectorsilmaisimettutkimuslaitteetparticle tracking detectorstime projection chambersneutriinotlarge detector systems for particle and astroparticle physicshiukkasfysiikkakosminen säteilyneutrino detectors
researchProduct

Measurement of visible cross sections in proton-lead collisions at √sNN= 5.02 TeV in van der Meer scans with the ALICE detector

2014

In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}=5.02$ TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage $4.6<\eta< 4.9$, $-3.3<\eta<-3.0$ and $2.8<\eta< 5.1$, $-3.7<\eta<-1.7$, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-…

ProtonNuclear Theorylarge detector systems for particle and astroparticle physicsLarge detector systems for particle and astroparticle physics; Particle tracking detec- tors; Heavy-ion detectors01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Particle tracking detectorsparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron detectionNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)PhysicsDetectorLuminosity measurement3. Good healthPRIRODNE ZNANOSTI. Fizika.Large detector systems for particle and astroparticle physics Particle tracking detec- torNucleonParticle Physics - ExperimentLarge detector systems for particle and astroparticle physics ; Particle tracking detectors ; Heavy-ion detectorsParticle physicsParticle tracking detec- torsInstrumentationHeavy-ion detectorsFOS: Physical sciencesLarge detector systems for particle and astroparticle physics; Particle tracking detectors; Heavy-ion detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicsCross section (physics)p-Pb collisions at the LHC0103 physical sciencesNuclear Physics - Experiment010306 general physics010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsALICE experimentLarge detector systems for particle and astroparticle physics Particle tracking detec- tors; Heavy-ion detectorsNATURAL SCIENCES. Physics.heavy-ion detectorsInstrumentation; Mathematical PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2

2019

The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas fac…

Wire chambers (MWPCdrift tube13000 GeV-cmsPhysics::Instrumentation and DetectorsmuonsTracking (particle physics)01 natural sciences030218 nuclear medicine & medical imagingHigh Energy Physics - ExperimentSubatomär fysikMWPCHigh Energy Physics - Experiment (hep-ex)Gaseous detectors0302 clinical medicineWire chambersDrift tubesSubatomic Physicsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]tracking detectorProportional chambersmomentum resolutionInstrumentationImage resolutionMathematical Physicsdrift tubesPhysicsLarge Hadron ColliderDrift chamberstrack data analysisMuon spectrometersResolution (electron density)DetectorSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Wire chambers (MWPC Thin-gap chambers drift chambers drift tubes proportional chambers etc)medicine.anatomical_structureCERN LHC Collproportional chambers etc)Gaseous detectors; Muon spectrometers; Particle tracking detectors (gaseous detectors); Wire chambers (MWPC thin-gap chambers drift chambers drift tubes proportional chambers etc)MDT chambersWire chambers (MWPC)LHCcolliding beams [p p]Particle Physics - Experimentp p: scatteringspectrometer [muon]Ciências Naturais::Ciências Físicas530 PhysicsParticle tracking detectors (Gaseous detectors):Ciências Físicas [Ciências Naturais]610FOS: Physical sciencesdrift chamber [muon]gas [monitoring]programming03 medical and health sciencesOpticsAtlas (anatomy)Muon spectrometer0103 physical sciencesCalibrationmedicinemuon: drift chamberGaseous detectorddc:610drift chambersHigh Energy Physicsspatial resolutionMuonScience & Technology010308 nuclear & particles physicsbusiness.industryhep-ex:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Thin-gap chamberscalibrationmonitoring: gasExperimental High Energy Physicsbusinessp p: colliding beamsmuon: spectrometerexperimental results
researchProduct

Latest Developments and Results of Radiation Tolerance CMOS Sensors with Small Collection Electrodes

2020

The development of radiation hard Depleted Monolithic Active Pixel Sensors (DMAPS) targets the replacement of hybrid pixel detectors to meet radiation hardness requirements of at least 1.5e16 1 MeV neq/cm2 for the HL-LHC and beyond. DMAPS were designed and tested in the TJ180 nm TowerJazz CMOS imaging technology with small electrodes pixel designs. This technology reduces costs and provides granularity of 36.4x36.4 um2 with low power operation (1 uW/pixel), low noise of ENC < 20 e-, a small collection electrode (3 um) and fast signal response within 25 ns bunch crossing. This contribution will present the latest developments after the MALTA and Mini-MALTA sensors. It will illustrate the imp…

noiseParticle tracking detectors ; Radiation-hard detectors ; Electronic detector readout concepts ; CMOS sensors ; Monolithic active pixel sensorsMaterials science010308 nuclear & particles physicsbusiness.industryintegrated circuitelectrode01 natural sciencesCMOSRadiation toleranceefficiency0103 physical sciencesElectrodeHardware_INTEGRATEDCIRCUITSelectronics: readoutOptoelectronicssemiconductor detector[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniquescontrol system010306 general physicsbusiness
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct