Search results for "Particle radiation"

showing 10 items of 677 documents

Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environmen…

2020

The aim of this study is to show how a newly developed aerodynamic lens system (ALS), a delayed ion extraction (DIE), and better electric shielding improve the efficiency of the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA). These improvements are applicable to single-particle laser ablation mass spectrometers in general. To characterize the modifications, extensive size-resolved measurements with spherical polystyrene latex particles (PSL; 150–6000 nm) and cubic sodium chloride particles (NaCl; 400–1700 nm) were performed. Measurements at a fixed ALS position show an improved detectable particle size range of the new ALS compared to the previously used Liu…

Atmospheric ScienceRange (particle radiation)Laser ablationMaterials science010504 meteorology & atmospheric sciencesParticle numberSpectrometerlcsh:TA715-787lcsh:Earthwork. FoundationsAnalytical chemistry010501 environmental sciences01 natural sciencesCharged particlelcsh:Environmental engineeringParticleParticle sizelcsh:TA170-171Particle beam0105 earth and related environmental sciencesAtmospheric Measurement Techniques
researchProduct

2014

Abstract. In January 2010 and December 2011, synoptic-scale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40μm were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical arr…

Atmospheric ScienceRange (particle radiation)LidarParticle numberArcticEnvironmental scienceParticleParticle sizeAtmospheric sciencesWater vaporAerosolAtmospheric Chemistry and Physics
researchProduct

Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006

2009

The Saharan Mineral Dust Experiment (SAMUM) was conducted in May/June 2006 in southern Morocco. As part of SAMUM, airborne in situ measurements of the particle size distribution in the diameter range 4 nm < Dp < 100 μm were conducted. The aerosol mixing state was determined below Dp < 2.5 μm. Furthermore, the vertical structure of the dust layers was investigated with a nadir-looking high spectral resolution lidar (HSRL). The desert dust aerosol exhibited two size regimes of different mixing states: below 0.5 μm, the particles had a non-volatile core and a volatile coating; larger particles above 0.5 μm consisted of non-volatile components and contained light absorbing material. In…

Atmospheric ScienceRange (particle radiation)Materials science010504 meteorology & atmospheric sciencesgiant particlesAnalytical chemistryAtmosphärische Spurenstoffemixing state010501 environmental sciencesMineral dust01 natural sciencesAerosoldust layer structureTroposphereSAMUMdesert dustParticle-size distributionUltrafine particleParticle sizeparticle size distributionSpectral resolutionairborne measurements0105 earth and related environmental sciencesRemote sensingTellus B
researchProduct

Hygroscopic properties and water-soluble volume fraction of atmospheric particles in the diameter range from 50 nm to 3.8 μm during LACE 98

2002

[1] Hygroscopic properties of atmospheric aerosol particles in the Aitken, large, and giant particle range were studied during the Lindenberg Aerosol Characterization Experiment (LACE 98) in a rural area 80 km southeast of Berlin. The hygroscopic behavior of Aitken particles were determined in situ in four size classes (50, 100, 150, 250 nm) with a Hygroscopic Tandem Differential Mobility Analyzer for relative humidities (RH) of 60% and 90%. Measurements at 60% RH served as reference data used by other LACE 98 investigators for mass closure and radiative transfer calculations. In most cases, at 90% RH, the atmospheric particles could be classified into two groups (“more” and “less” hygrosco…

Atmospheric ScienceRange (particle radiation)Materials scienceEcologyAnalytical chemistryPaleontologySoil ScienceMineralogyForestryFraction (chemistry)Aquatic ScienceOceanographyAerosolGeophysicsVolume (thermodynamics)Space and Planetary ScienceGeochemistry and PetrologyDifferential mobility analyzerVolume fractionEarth and Planetary Sciences (miscellaneous)ParticleParticle sizeEarth-Surface ProcessesWater Science and TechnologyJournal of Geophysical Research: Atmospheres
researchProduct

Rainwater composition over a rural area with special emphasis on the size distribution of insoluble particulate matter

1987

The rainwater composition in the vicinity of Mainz, FRG, has been investigated with special emphasis on insoluble constituents. The number size distribution was determined in the range from 0.1 μm up to 100 μm radius. For particles with r>0.5 μm radius the shape of the size distribution of insoluble particles in rain follows the shape of the average urban and rural aerosol. In this particular size range no major size selective removal processes could be seen. For r<0.5 μm the number size distribution tends to flatten compared to the average aerosol. This might be the indication of a size selective removal process (Greenfield Gap).

Atmospheric ScienceRange (particle radiation)Materials scienceEnvironmental ChemistryMineralogyComposition (visual arts)RadiusParticulatesSize selectiveChemical compositionRainwater harvestingAerosolJournal of Atmospheric Chemistry
researchProduct

New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign

2010

Aerosol properties were studied during an intensive airborne measurement campaign that took place at Rotterdam in Netherlands in May 2008 within the framework of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). The objective of this study is to illustrate seven events of new particle formation (NPF) observed with two Condensation Particle Counters (CPCs) operated on board the ATR-42 research aircraft in airsectors around Rotterdam, and to provide information on the spatial extent of the new particle formation phenomenon based on 1-s resolution measurements of ultra-fine particle (in the size range 3–10 nm diameter, denoted N&lt;sub&gt;3-10&lt;/sub&gt; herea…

Atmospheric ScienceRange (particle radiation)Meteorology010504 meteorology & atmospheric sciencesCondensationNucleation010501 environmental sciences01 natural scienceslcsh:QC1-999Aerosollcsh:ChemistryBoundary layerlcsh:QD1-99913. Climate actionEnvironmental scienceParticle[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/GlaciologyAir quality indexAir masslcsh:Physics0105 earth and related environmental sciencesATMOSPHERIC CHEMISTRY AND PHYSICS, 10, 6721-6735, 2010
researchProduct

2009

Abstract. A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System) for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs) operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp) range from 6 nm up to 1 μm. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of th…

Atmospheric SciencegeographyRange (particle radiation)geography.geographical_feature_categoryChemistryCondensationAnalytical chemistryParticleInletParticle counterCondenser (heat transfer)AerosolLine (formation)Atmospheric Measurement Techniques
researchProduct

Sawtooth-wave adiabatic-passage slowing of dysprosium

2018

We report on sawtooth wave adiabatic passage (SWAP) slowing of bosonic and fermionic dysprosium isotopes by using a 136 kHz wide transition at 626 nm. A beam of precooled atoms is further decelerated in one dimension by the SWAP force and the amount of atoms at near zero velocity is measured. We demonstrate that the SWAP slowing can be twice as fast as in a conventional optical molasses operated on the same transition. In addition, we investigate the parameter range for which the SWAP force is efficiently usable in our set-up, and relate the results to the adiabaticity condition. Furthermore, we add losses to the hyperfine ground-state population of fermionic dysprosium during deceleration …

Atomic Physics (physics.atom-ph)PopulationFOS: Physical scienceschemistry.chemical_elementSawtooth wave01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmas0103 physical sciencesPhysics::Atomic Physics010306 general physicsAdiabatic processeducationHyperfine structurePhysicsQuantum PhysicsRange (particle radiation)education.field_of_studychemistryQuantum Gases (cond-mat.quant-gas)Optical molassesDysprosiumAtomic physicsQuantum Physics (quant-ph)Condensed Matter - Quantum GasesBeam (structure)Physical Review A
researchProduct

Search for a light exotic particle inJ/ψradiative decays

2012

Using a data sample containing 1.06x10^8 psi' events collected with the BESIII detector at the BEPCII electron-positron collider, we search for a light exotic particle X in the process psi' -&gt; pi^+ pi^- J/psi, J/psi -&gt; gamma X, X -&gt; mu^+ mu^-. This light particle X could be a Higgs-like boson A^0, a spin-1 U boson, or a pseudoscalar sgoldstino particle. In this analysis, we find no evidence for any mu^+mu^- mass peak between the mass threshold and 3.0 GeV/c^2. We set 90%-confidence-level upper limits on the product-branching fractions for J/psi -&gt; gamma A^0, A^0 -&gt; mu^+ mu^- which range from 4x10^{-7} to 2.1x10^{-5}, depending on the mass of A^0, for M(A^0)&lt;3.0 GeV/c^2. On…

BOSONSPhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)ENERGIESElectron–positron annihilationGRAVITINOFOS: Physical sciencesSupersymmetryHigh Energy Physics - Experimentlaw.inventionNuclear physicsPseudoscalarHigh Energy Physics - Experiment (hep-ex)lawSgoldstinoRadiative transferHigh Energy Physics::ExperimentColliderBosonPhysical Review D
researchProduct

Structure and dynamics of CaO films: A computational study of an effect of external static electric field

2017

Oxide films play a significant role in a wide range of industrial fields, mostly due to the thickness-dependent variation of their properties. Recently, it has been proposed based on the experimental study that carrier transport in CaO films proceeds via strong phonon excitations with a variable signal depending on the film thickness. In this paper, we report a detailed investigation in the frame of the density functional theory of structural and electronic properties of freestanding and Mo(100)-supported CaO films, as well as phonons therein, as functions of the film thickness and intensity of the external static electric field. Our calculations demonstrate that phonon frequencies negligib…

Band gapPhononphononsOxide02 engineering and technologyexternal electric field01 natural scienceschemistry.chemical_compoundCondensed Matter::Materials ScienceCaO filmsElectric fieldCondensed Matter::Superconductivity0103 physical sciences010306 general physicsta116fononitPhysicsRange (particle radiation)ta114Condensed matter physicsElectronic Optical and Magnetic Materialsähköiset ominaisuudetCondensed Matter Physics021001 nanoscience & nanotechnologyElectron transport chainchemistrysähkökentätelectronic propertiesDensity functional theoryohutkalvot0210 nano-technologyIntensity (heat transfer)
researchProduct