Search results for "Path integral"
showing 10 items of 80 documents
Simplicial Wheeler-DeWitt equation in 2+1 spacetime dimensions.
1993
We introduce an equation which rue suggest to be a simplicial counterpart to the Wheeler-DeWitt equation in 2 + 1 spacetime dimensions. Our approach is based on the use of the Ashtekar variables
A simple microsuperspace model in 2 + 1 spacetime dimensions
1992
Abstract We quantize the closed Friedmann model in 2 + 1 spacetime dimensions using euclidean path-integral approach and a simple microsuperspace model. A relationship between integration measure and operator ordering in the Wheeler-DeWitt equation is found within our model. Solutions to the Wheeler-DeWitt equation are exactly reproduced from the path integral using suitable integration contours in the complex plane.
Bare Action and Regularized Functional Integral of Asymptotically Safe Quantum Gravity
2009
Investigations of Quantum Einstein Gravity (QEG) based upon the effective average action employ a flow equation which does not contain any ultraviolet (UV) regulator. Its renormalization group trajectories emanating from a non-Gaussian fixed point define asymptotically safe quantum field theories. A priori these theories are, somewhat unusually, given in terms of their effective rather than bare action. In this paper we construct a functional integral representation of these theories. We fix a regularized measure and show that every trajectory of effective average actions, depending on an IR cutoff only, induces an associated trajectory of bare actions which depend on a UV cutoff. Together …
Coordinate-free quantization of first-class constrained systems
1996
The coordinate-free formulation of canonical quantization, achieved by a flat-space Brownian motion regularization of phase-space path integrals, is extended to a special class of closed first-class constrained systems that is broad enough to include Yang-Mills type theories with an arbitrary compact gauge group. Central to this extension are the use of coherent state path integrals and of Lagrange multiplier integrations that engender projection operators onto the subspace of gauge invariant states.
Gibbs-ensemble path-integral Monte Carlo simulations of a mixed quantum-classical fluid
1995
We study a model fluid with classical translational degrees of freedom and internal quantum states in two spatial dimensions. The path-integral Monte Carlo and the Gibbs-ensemble Monte Carlo techniques are combined to investigate the liquid-gas coexistence region in this mixed quantum-classical system. A comparison with the phase diagram obtained in the canonical ensemble is also presented.
Green functions for nearest- and next-nearest-neighbor hopping on the Bethe lattice
2005
We calculate the local Green function for a quantum-mechanical particle with hopping between nearest and next-nearest neighbors on the Bethe lattice, where the on-site energies may alternate on sublattices. For infinite connectivity the renormalized perturbation expansion is carried out by counting all non-self-intersecting paths, leading to an implicit equation for the local Green function. By integrating out branches of the Bethe lattice the same equation is obtained from a path integral approach for the partition function. This also provides the local Green function for finite connectivity. Finally, a recently developed topological approach is extended to derive an operator identity whic…
Quantized Fields and Their Interpretation
2013
This chapter deals with the quantum theory of systems with an infinite number of degrees of freedom and provides elements of quantum field theory.
Special Section on Fractional Operators in the Analysis of Mechanical Systems Under Stochastic Agencies
2017
Many-body quantum dynamics by adiabatic path-integral molecular dynamics: Disordered Frenkel Kontorova models
2005
The spectral density of quantum mechanical Frenkel Kontorova chains moving in disordered, external potentials is investigated by means of path-integral molecular dynamics. If the second moment of the embedding potential is well defined (roughness exponent ), there is one regime in which the chain is pinned (large masses of chain particles) and one in which it is unpinned (small ). If the embedding potential can be classified as a random walk on large length scales ( ), then the chain is always pinned irrespective of the value of . For , two phonon-like branches appear in the spectra.
Measure dependence of 2D simplicial quantum gravity
1995
We study pure 2D Euclidean quantum gravity with $R^2$ interaction on spherical lattices, employing Regge's formulation. We attempt to measure the string susceptibility exponent $\gamma_{\rm str}$ by using a finite-size scaling Ansatz in the expectation value of $R^2$. To check on effects of the path integral measure we investigate two scale invariant measures, the "computer" measure $dl/l$ and the Misner measure $dl/\sqrt A$.