Search results for "Peptide"

showing 10 items of 4589 documents

Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status

2016

International audience; All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the act…

0301 basic medicineMyriocinOrm2Saccharomyces-cerevisiaeMembrane propertiesFatty Acids MonounsaturatedGlycogen Synthase Kinase 3Bacteriocins[SDV.IDA]Life Sciences [q-bio]/Food engineeringHomeostasisPhosphorylationMicroscopy ConfocalbiologyEffectorPlasma-membraneActin cytoskeleton[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringPhospholipid translocationTransmembrane proteinCell biologyCold TemperatureBiochemistryP-type atpasesSignal transductionCold stressCell-wall integrityProtein BindingSignal TransductionProteins slm1Saccharomyces cerevisiae ProteinsPhospholipid translocationHigh-pressureSaccharomyces cerevisiaeImmunoblottingFluorescence PolarizationSaccharomyces cerevisiaeSignallingModels Biological3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesBudding yeastMolecular BiologySphingolipids030102 biochemistry & molecular biologyTryptophan permeasePhospholipid flippingMembrane ProteinsCell Biologybiology.organism_classificationActin cytoskeletonSphingolipidYeast030104 developmental biologyMembrane proteinMutationPeptidesReactive Oxygen Species
researchProduct

Genetic regulation and function of epidermal growth factor receptor signalling in patterning of the embryonicDrosophilabrain

2016

The specification of distinct neural cell types in central nervous system development crucially depends on positional cues conferred to neural stem cells in the neuroectoderm. Here, we investigate the regulation and function of the epidermal growth factor receptor (EGFR) signalling pathway in early development of theDrosophilabrain. We find that localized EGFR signalling in the brain neuroectoderm relies on a neuromere-specific deployment of activating (Spitz, Vein) and inhibiting (Argos) ligands. Activated EGFR controls the spatially restricted expression of all dorsoventral (DV) patterning genes in a gene- and neuromere-specific manner. Further, we reveal a novel role of DV genes—ventral …

0301 basic medicineNervous system197brain neuroblastsrhomboidBasic Helix-Loop-Helix Transcription FactorsDrosophila ProteinsEpidermal growth factor receptorPhosphorylationlcsh:QH301-705.5NeuregulinsNeural PlateGeneral NeuroscienceNeurogenesisBrainGene Expression Regulation DevelopmentalNuclear ProteinsAnatomyargosNeural stem cellHedgehog signaling pathwayCell biologyErbB ReceptorsDrosophila melanogastermedicine.anatomical_structureResearch ArticleSignal Transduction1001NeurogenesisImmunologyNerve Tissue ProteinsBiology133General Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroblastveindorsoventral patterning genesmedicineAnimalsEye ProteinsReceptors Invertebrate PeptideBody PatterningHomeodomain ProteinsEpidermal Growth FactorNeuroectodermResearchMembrane Proteins58Embryonic stem cell030104 developmental biologylcsh:Biology (General)biology.proteinepidermal growth factor receptorTranscription FactorsOpen Biology
researchProduct

LPA1, LPA2, LPA4, and LPA6receptor expression during mouse brain development

2019

Background:LPA is a small bioactive phospholipid that acts as an extracellularsignaling molecule and is involved in cellular processes, including cell prolifera-tion, migration, and differentiation. LPA acts by binding and activating at least sixknown G protein–coupled receptors: LPA1–6. In recent years, LPA has beensuggested to play an important role both in normal neuronal development andunder pathological conditions in the nervous system. Results:We show the expression pattern of LPA receptors during mouse braindevelopment by using qRT-PCR, in situ hybridization, and immunocytochemistry.Only LPA1,LPA2,LPA4,and LPA6 mRNA transcripts were detected throughoutdevelopment stages from embryoni…

0301 basic medicineNervous systemMessenger RNANeocortexReceptor expressionIn situ hybridizationHippocampal formationBiologyCell biology03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinemedicine.anatomical_structurechemistryLysophosphatidic acidmedicinelipids (amino acids peptides and proteins)Receptor030217 neurology & neurosurgeryDevelopmental BiologyDevelopmental Dynamics
researchProduct

The Elastin-Derived Peptide VGVAPG Does Not Activate the Inflammatory Process in Mouse Cortical Astrocytes In Vitro.

2019

Abstract During vascular aging or in pathological conditions in humans, elastin is degraded and its by-products, the elastin-derived peptides (EDPs), enter the blood circulation. EDPs may be detected in the serum of healthy subjects or people who suffered a stroke. Moreover, recent evidence suggests a potential role of inflammatory mechanisms in neurological conditions, which are usually not categorized as inflammatory. Therefore, the present in vitro study was conducted to investigate the impact of the VGVAPG peptide on the activation of inflammatory process in mouse primary astrocytes, which were maintained in phenol red-free DMEM/F12 supplemented with 10% fetal bovine serum. The cells we…

0301 basic medicineNervous systemSOD1Primary Cell CultureGene ExpressionPeptideInflammationToxicologyRosiglitazone03 medical and health sciencesMice0302 clinical medicinemedicineAnimalschemistry.chemical_classificationInflammationbiologyChemistryGeneral NeuroscienceIn vitroCell biologyElastinElastin-derived peptides030104 developmental biologymedicine.anatomical_structureVGVAPGAstrocytesbiology.proteinOriginal Articlemedicine.symptomInflammation MediatorsPeptidesAstrocyteElastinOligopeptides030217 neurology & neurosurgeryFetal bovine serumAstrocyteNeurotoxicity research
researchProduct

New functions of Semaphorin 3E and its receptor PlexinD1 during developing and adult hippocampal formation

2018

AbstractThe development and maturation of cortical circuits relies on the coordinated actions of long and short range axonal guidance cues. In this regard, the class 3 semaphorins and their receptors have been seen to be involved in the development and maturation of the hippocampal connections. However, although the role of most of their family members have been described, very few data about the participation of Semaphorin 3E (Sema3E) and its receptor PlexinD1 during the development and maturation of the entorhino-hippocampal (EH) connection are available. In the present study, we focused on determining their roles both during development and in adulthood. We determined a relevant role for…

0301 basic medicineNeurobiologia del desenvolupamentScienceHippocampusNerve Tissue ProteinsSemaphorinsBiologyHippocampal formationHippocampusArticle03 medical and health sciencesMice0302 clinical medicineSemaphorinmedicineAnimalsDevelopmental neurobiologyProgenitor cellReceptorCells CulturedGlycoproteinsNeuronsMultidisciplinaryMembrane GlycoproteinsHippocampus properDentate gyrusQRIntracellular Signaling Peptides and ProteinsGene Expression Regulation DevelopmentalMembrane ProteinsProteinsEmbryonic stem cellCytoskeletal Proteins030104 developmental biologymedicine.anatomical_structurenervous systemMutationMedicineNeuroscienceProteïnes030217 neurology & neurosurgerySignal Transduction
researchProduct

Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala

2016

The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or “hubs”) within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and pepti…

0301 basic medicineNeuroscience (miscellaneous)emotionNucleus accumbensAmygdalalcsh:RC321-571lcsh:QM1-695social behavior03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineExtended amygdalamotivationarousalmedicineTegmentumlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryneuropeptideOriginal Researchnucleus incertusFearlcsh:Human anatomytheta rhythmanxietyNucleus IncertusVentral tegmental areaStria terminalis030104 developmental biologymedicine.anatomical_structurenervous systemAnatomyPsychologyNeuroscienceNucleus030217 neurology & neurosurgeryNeuroscience
researchProduct

Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain

2017

Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse cont…

0301 basic medicineNeurotransmitter transportermedicine.medical_specialtyMice03 medical and health sciencesProgranulins0302 clinical medicinePeripheral Nerve InjuriesInternal medicinemental disordersmedicineAnimalsPrefrontal cortexMolecular BiologyGranulinsMice KnockoutIon Transportbusiness.industryChronic painmedicine.diseaseZinc030104 developmental biologyNociceptionEndocrinologyCompulsive behaviorNeuropathic painPeripheral nerve injuryIntercellular Signaling Peptides and ProteinsNeuralgiaMolecular MedicineChronic Painmedicine.symptomCarrier Proteinsbusiness030217 neurology & neurosurgeryFrontotemporal dementiaBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
researchProduct

Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis

2020

Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play …

0301 basic medicineNeutrophilsLipoproteinsT-LymphocytesT cellInflammationlcsh:TX341-641Review030204 cardiovascular system & hematologyMonocytesMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmune systemimmune cellsmedicineAnimalsHomeostasisHumansCell ProliferationImmunity CellularNutrition and DieteticsChemistryCholesterolMacrophagesMonocytecholesterolLipid MetabolismSterolhematopoiesisCell biology030104 developmental biologymedicine.anatomical_structureLiverinflammationlipids (amino acids peptides and proteins)medicine.symptomatherosclerosismetabolismlcsh:Nutrition. Foods and food supplyIntracellularFood ScienceHormoneNutrients
researchProduct

The VGVAPG Peptide Regulates the Production of Nitric Oxide Synthases and Reactive Oxygen Species in Mouse Astrocyte Cells In Vitro

2018

The products of elastin degradation, namely elastin-derived peptides (EDPs), are detectable in the cerebrospinal fluid of healthy individuals and in patients after ischemic stroke, and their number increases with age. Depending on their concentrations, both nitric oxide (NO) and reactive oxygen species (ROS) take part either in myocardial ischemia reperfusion injury or in neurovascular protection after ischemic stroke. The aim of our study was to determine the impact of VGVAPG peptide on ROS and NO production and expression of endothelial nitric oxide synthase (eNos), inducible nitric oxide synthase (iNos) and neuronal nitric oxide synthase (nNos) in mouse cortical astrocytes in vitro. Prim…

0301 basic medicineNitric Oxide Synthase Type IIINitric Oxide Synthase Type IInNosNitric Oxide Synthase Type INitric OxideBiochemistryNitric oxide03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compoundMice0302 clinical medicineEnosmedicineAnimalsReceptorchemistry.chemical_classificationGene knockdownReactive oxygen speciesOriginal PaperbiologyROSGeneral Medicinemedicine.diseasebiology.organism_classificationCell biologyElastin-derived peptidesNitric oxide synthaseiNos030104 developmental biologychemistryVGVAPGAstrocytesbiology.proteineNosFemaleNitric Oxide SynthasePeptidesReactive Oxygen SpeciesReperfusion injuryOligopeptides030217 neurology & neurosurgeryFetal bovine serumNeurochemical Research
researchProduct

Identification of noncovalent proteasome inhibitors with high selectivity for chymotrypsin-like activity by a multistep structure-based virtual scree…

2016

Noncovalent proteasome inhibitors introduce an alternative mechanism of inhibition to that of covalent inhibitors, e.g. carfilzomib, used in cancer therapy. A multistep hierarchical structure-based virtual screening (SBVS) of the 65,375 NCI lead-like compound library led to the identification of two compounds (9 and 28) which noncovalently inhibited the chymotrypsin-like (ChT-L) activity (Ki = 2.18 and 2.12 μM, respectively) with little or no effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and post-glutamyl peptide hydrolase (PGPH) activities. A subsequent hierarchical similarity search over the full NCI database with the most active tripeptide-based inh…

0301 basic medicineNon-covalentVirtual screeningProteasome Endopeptidase ComplexStereochemistryProtein ConformationProteolysisDrug Evaluation PreclinicalTripeptideSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity RelationshipUser-Computer Interface0302 clinical medicineProtein structureCell Line TumorDrug DiscoverymedicineStructure–activity relationshipChymotrypsinHumansProteasome inhibitorCell ProliferationPharmacologyVirtual screeningmedicine.diagnostic_testOrganic ChemistryGeneral MedicineCarfilzomibPeptide scaffoldMolecular Docking SimulationProteasome inhibitors; Non-covalent; Peptide scaffold; Docking studies; Virtual screening030104 developmental biologyProteasomechemistryBiochemistryDocking (molecular)030220 oncology & carcinogenesisDocking studieProteolysisProteasome InhibitorsEuropean journal of medicinal chemistry
researchProduct