Search results for "Perovskite"

showing 10 items of 458 documents

Hydrothermal synthesis of nanostructured inorganic powders by a continuous process under supercritical conditions

2005

Abstract In this study, using a prototype of hydrothermal synthesis in subcritical and supercritical water working in a continuous way, nanometric ceramic precursors with perfectly defined composition are produced: spinel ferrites such as Fe2CoO4, TiO2 with anatase structure and also perovskite structures such as BaZrO3. The as-prepared powders are fully characterized by complementary experiments: X-ray diffraction, electron microscopies, EDX spectrometry, surface area measurement, etc. Thus, particles size, morphology, aggregation state, crystal structure, composition are investigated. Moreover, magnetic properties of the ferrites products are studied. The powders obtained are pure phases …

AnataseMaterials scienceSpinelMineralogyengineering.materialSupercritical fluidGrain sizeChemical engineeringvisual_artX-ray crystallographyMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumengineeringHydrothermal synthesisCeramicPerovskite (structure)Journal of the European Ceramic Society
researchProduct

Removal of Surface Oxygen Vacancies Increases Conductance Through TiO(2) Thin Films for Perovskite Solar Cells

2019

[Image: see text] We report that UV–ozone treatment of TiO(2) anatase thin films is an efficient method to increase the conductance through the film by more than 2 orders of magnitude. The increase in conductance is quantified via conductive scanning force microscopy on freshly annealed and UV–ozone-treated TiO(2) anatase thin films on fluorine-doped tin oxide substrates. The increased conductance of TiO(2) anatase thin films results in a 2% increase of the average power conversion efficiency (PCE) of methylammonium lead iodide-based perovskite solar cells. PCE values up to 19.5% for mesoporous solar cells are realized. The additional UV–ozone treatment results in a reduced number of oxygen…

AnataseMaterials sciencetechnology industry and agriculturechemistry.chemical_elementConductance02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyTin oxide01 natural sciencesOxygen0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyChemical engineeringchemistryX-ray photoelectron spectroscopyCharge carrierPhysical and Theoretical ChemistryThin film0210 nano-technologyPerovskite (structure)
researchProduct

Systematic trends in (0 0 1) surface ab initio calculations of ABO 3 perovskites

2018

This work was supported by the Latvian Council of Science Grant No. 374/2012 and the Latvian National Research Program IMIS2. Many stimulating discussions with D. Vanderbilt, K.M. Rabe, M. Rohlfing, E. Heifets, J. Maier, G. Borstel and E.A. Kotomin are greatly acknowledged.

B3LYPBand gapABO3 perovskitesPopulation02 engineering and technology01 natural scienceslcsh:ChemistryCrystalAb initio quantum chemistry methodsComputational chemistry0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Surface layer010306 general physicseducationPerovskite (structure)(0 0 1) surfaceseducation.field_of_studyCondensed matter physicsChemistryRelaxation (NMR)General Chemistry021001 nanoscience & nanotechnologyB3PWlcsh:QD1-999Chemical bondAb initio calculations0210 nano-technologyJournal of Saudi Chemical Society
researchProduct

Comparative Ab Initio Calculations of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) Surfaces

2020

We performed, for first time, ab initio calculations for the ReO2-terminated ReO3 (001) surface and analyzed systematic trends in the ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surfaces using first-principles calculations. According to the ab initio calculation results, all ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surface upper-layer atoms relax inwards towards the crystal bulk, all second-layer atoms relax upwards and all third-layer atoms, again, relax inwards. The ReO2-terminated ReO3 and ZrO2-terminated SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surface band gaps at the &Gamma

B3LYPMaterials scienceReO<sub>3</sub>Band gapABO3 perovskitesGeneral Chemical EngineeringPopulationab initio methodsAb initio02 engineering and technology010402 general chemistry01 natural sciencesMolecular physicsInorganic ChemistryCrystalABO<sub>3</sub> perovskitesAb initio quantum chemistry methodsAtomlcsh:QD901-999:NATURAL SCIENCES:Physics [Research Subject Categories]ReO3General Materials ScienceeducationPerovskite (structure)education.field_of_studyAb initio methods021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesB3PWChemical bond(001) surfacelcsh:Crystallography0210 nano-technologyCrystals
researchProduct

A Bader’s topological approach for the investigation of the high pressure stability field of the Mg-perovskite phase

2014

Bader topological analysis perovskite phase transitionSettore GEO/06 - MineralogiaSettore CHIM/02 - Chimica Fisica
researchProduct

The pressure-induced ringwoodite to Mg-perovskite and periclase post-spinel phase transition: a Bader’s topological analysis of the ab initio electro…

2011

In order to characterize the pressure-induced decomposition of ringwoodite (c-Mg2SiO4), the topological analysis of the electron density q(r), based upon the theory of atoms in molecules (AIM) developed by Bader in the framework of the catastrophe theory, has been performed. Calculations have been carried out by means of the ab initio CRYSTAL09 code at the HF/DFT level, using Hamiltonians based on the Becke- LYP scheme containing hybrid Hartree– Fock/density functional exchange–correlation terms. The equation of state at 0 K has been constructed for the three phases involved in the post-spinel phase transition (ringwoodite -> Mg-perovskite + periclase) occurring at the transition zone–lower…

Bader’s topological analysisElectron densityEquation of statePhase transitionRingwoodite Post-spinel phase transition Bader’s topological analysis Ab initio Catastrophe theory Critical pointsChemistryCatastrophe theoryAtoms in moleculesRingwooditeAb initioCritical pointsHartreeengineering.materialTopologyRingwoodite; Post-spinel phase transition; Bader’s topological analysis; Ab initio; Catastrophe theory; Critical pointsPost-spinel phase transitionRingwooditeGeochemistry and PetrologyBader’s topological analysiAb initioengineeringGeneral Materials SciencePerovskite (structure)
researchProduct

First principles calculations of SrZrO3 bulk and ZrO2-terminated (001) surface F centers

2016

Abstract Using a supercell model and B3PW hybrid exchange-correlation functional in the framework of the density functional theory (DFT), as it is implemented in the CRYSTAL computer code, we performed ab initio calculations for the F -center located in the SrZrO 3 bulk and on the ZrO 2 -terminated (001) surface. According to the results of performed relaxation of atoms around the defect, two nearest Zr and four Sr atoms are repulsed, but all oxygen atoms are attracted towards both, the bulk and (001) surface F -center. The displacement magnitudes of atoms surrounding the bulk F -center are smaller than around the (001) surface F -center. The B3PW calculated SrZrO 3 bulk optical band gap (5…

Band gapChemistryMaterials Science (miscellaneous)Ab initioBulk F center02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSrZrO3Electronic Optical and Magnetic Materials(001) surface F-CenterCrystalChemical bondAb initio quantum chemistry methodsVacancy defect0103 physical sciencesMaterials ChemistryDensity functional theoryAb initio calculationsAtomic physics010306 general physics0210 nano-technologyPerovskite (structure)Computational Condensed Matter
researchProduct

Cation Environment in BaCeO3-Based Protonic Conductors: a Computational Study

2009

Geometry calculations were performed on pure BaCeO(3) fragments and on Y- and In-doped derivatives. HF and DFT approaches were used to investigate monoclinic and orthorhombic structures. The computational methods, structural models, and electronic structure investigation protocols were tuned taking into consideration and balancing the consistency of the results against the computational cost. The calculated structures and energetics parameter, as well as the detailed orbital analysis performed on the corresponding BaCeO(3) derivatives allowed us to explain experimental findings and to develop a procedure to study the cationic octahedral environment of doped X:BaCeO(3) (X = Y, In) and undope…

Basis (linear algebra)ChemistryDopingElectronic structureCondensed Matter::Materials ScienceOctahedronComputational chemistryChemical physicsOrthorhombic crystal systemperovskite computational chemistryPhysical and Theoretical ChemistryElectrical conductorOrbital analysisMonoclinic crystal system
researchProduct

Laser Ablation of Hybrid Perovskite Bulks into Nanoparticles: Adamantylammonium Halides as Ligands and Halide Sources

2019

BiomaterialsLaser ablationMaterials sciencePhotoluminescenceNanocrystalRenewable Energy Sustainability and the EnvironmentMaterials ChemistryEnergy Engineering and Power TechnologyNanoparticleHalidePhotochemistryPerovskite (structure)ChemNanoMat
researchProduct

Perovskite Solar Cells: Heteroatom Effect on Star-Shaped Hole-Transporting Materials for Perovskite Solar Cells (Adv. Funct. Mater. 31/2018)

2018

BiomaterialsMaterials scienceChemical engineeringHeteroatomElectrochemistryStar (graph theory)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsPerovskite (structure)Advanced Functional Materials
researchProduct