Search results for "Peroxisome Proliferator-Activated Receptor"
showing 10 items of 123 documents
Enhanced steatosis by nuclear receptor ligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expres…
2010
Steatosis is the first step in the development of non-alcoholic fatty liver disease (NAFLD). However, the mechanisms involved in its pathogenesis are not fully understood. Many nuclear receptors (NRs) involved in energy homeostasis and biotransformation constitute a network connecting fatty acids, cholesterol and xenobiotic metabolisms; therefore, multiple NRs and their ligands may play a prominent role in liver fat metabolism and accumulation. In this study we have attempted to gain insight into the relevance of the NR superfamily in NAFLD by investigating the steatogenic potential of 76 different NR ligands in fatty acid overloaded human hepatocytes and hepatoma cells. Moreover, we have d…
Glucocorticoid receptor regulates organic cation transporter 1 (OCT1, SLC22A1) expression via HNF4α upregulation in primary human hepatocytes
2013
Abstract Background Organic cation transporter 1 (OCT1, SLC22A1) is a membrane transporter that is important for therapeutic effect of the antidiabetic drug metformin. Its liver-specific expression in hepatocytes is strongly controlled by hepatocyte nuclear factor-4α (HNF4α). HNF4α expression and transcriptional activity have been demonstrated to be augmented by glucocorticoid receptor (GR) in human hepatocytes and rodent livers. Methods It was examined whether GR activation indirectly induces OCT1 gene expression via HNF4α up-regulation in primary human hepatocytes.We also examined which other transcription factors are involved in OCT1 gene expression and whether they are regulated by dexa…
A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability
2017
AbstractProteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed…
Peroxisome-proliferator-activated receptors as physiological sensors of fatty acid metabolism: molecular regulation in peroxisomes
2001
The enzymes required for the beta-oxidation of fatty acyl-CoA are present in peroxisomes and mitochondria. Administration of hypolipidaemic compounds such as clofibrate to rodents leads to an increase in the volume and density of peroxisomes in liver cells. These proliferators also induce simultaneously the expression of genes encoding acyl-CoA oxidase, enoyl-CoA hydratase-hydroxyacyl-CoA dehydrogenase (multifunctional enzyme) and thiolase (3-ketoacyl-CoA thiolase). All these enzymes are responsible for long-chain and very-long-chain fatty acid beta-oxidation in peroxisomes. Similar results were observed when rat hepatocytes, or liver-derived cell lines, were cultured with a peroxisome prol…
Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism.
1997
Peroxisome proliferation (PP) in mammalian cells, first described 30 years ago, represents a fascinating field of modern research. Major improvements made in its understanding were obtained through basic advances that have opened up new areas in cell biology, biochemistry and genetics. A decade after the first report on PP, a new metabolic pathway (peroxisomal beta-oxidation) and its inducibility by peroxisome proliferators were discovered. More recently, a new type of nuclear receptor, the peroxisome proliferator-activated receptor (PPAR), has been described. The first PPAR was discovered in 1990. Since then, many other PPARs have been characterized. This original class of nuclear receptor…
Regulation of the peroxisomal β-oxidation-dependent pathway by peroxisome proliferator-activated receptor α and kinases
2000
The first PPAR (peroxisome proliferator-activated receptor) was cloned in 1990 by Issemann and Green (Nature 347:645-650). This nuclear receptor was so named since it is activated by peroxisome proliferators including several drugs of the fibrate family, plasticizers, and herbicides. This receptor belongs to the steroid receptor superfamily. After activation by a specific ligand, it binds to a DNA response element, PPRE (peroxisome proliferator response element), which is a DR-1 direct repeat of the consensus sequence TGACCT x TGACCT. This mechanism leads to the transcriptional activation of target genes (Motojima et al., J Biol Chem 273:16710-16714, 1998). After the first discovery, severa…
A Molecular Dynamics-Shared Pharmacophore Approach to Boost Early-Enrichment Virtual Screening: A Case Study on Peroxisome Proliferator-Activated Rec…
2016
Molecular dynamics (MD) simulations can be used, prior to virtual screening, to add flexibility to proteins and study them in a dynamic way. Furthermore, the use of multiple crystal structures of the same protein containing different co-crystallized ligands can help elucidate the role of the ligand on a protein's active conformation, and then explore the most common interactions between small molecules and the receptor. In this work, we evaluated the contribution of the combined use of MD on crystal structures containing the same protein but different ligands to examine the crucial ligand-protein interactions within the complexes. The study was carried out on peroxisome proliferator-activat…
Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance
2008
Background Exercise practitioners often take vitamin C supplements because intense muscular contractile activity can result in oxidative stress, as indicated by altered muscle and blood glutathione concentrations and increases in protein, DNA, and lipid peroxidation. There is, however, considerable debate regarding the beneficial health effects of vitamin C supplementation. Objective This study was designed to study the effect of vitamin C on training efficiency in rats and in humans. Design The human study was double-blind and randomized. Fourteen men (27-36 y old) were trained for 8 wk. Five of the men were supplemented daily with an oral dose of 1 g vitamin C. In the animal study, 24 mal…
New molecular aspects of regulation of mitochondrial activity by fenofibrate and fasting
2000
Abstract Fenofibrate and fasting are known to regulate several genes involved in lipid metabolism in a similar way. In this study measuring several mitochondrial enzyme activities, we demonstrate that, in contrast to citrate synthase and complex II, cytochrome c oxidase (COX) is a specific target of these two treatments. In mouse liver organelles, Western blot experiments indicated that mitochondrial levels of p43, a mitochondrial T3 receptor, and mitochondrial peroxisome proliferator activated receptor (mt-PPAR), previously described as a dimeric partner of p43 in the organelle, are increased by both fenofibrate and fasting. In addition, in PPARα-deficient mice, this influence was abolishe…
Action of low doses of Aspirin in Inflammation and Oxidative Stress induced by aβ1-42 on Astrocytes in primary culture
2020
Aspirin has been used as anti-inflammatory and anti-aggregate for decades but the precise mechanism(s) of action after the presence of the toxic peptide Aβ1-42 in cultured astrocytes remains poorly resolved. Here we use low-doses of aspirin (10-7 M) in astrocytes in primary culture in presence or absence of Aβ1-42 toxic peptide. We noted an increase of cell viability and proliferation with or without Aβ1-42 peptide presence in aspirin treated cells. In addition, a decrease in apoptosis, determined by Caspase 3 activity and the expression of Cyt c and Smac/Diablo, were detected. Also, aspirin diminished necrosis process (LDH levels), pro-inflammatory mediators (IL-β and TNF-α) and NF-ᴋB prot…