Search results for "Peroxisome"

showing 10 items of 232 documents

Peroxisome proliferator-activated receptors as regulators of lipid metabolism; tissue differential expression in adipose tissues during cold acclimat…

2004

Brown (BAT) and white (WAT) adipose tissues play a key role in the body energy balance orchestrated by the central nervous system. Hibernators have developed a seasonal obesity to respond to inhospitable environment. Jerboa is one of the deep hibernator originated from sub-desert highlands. Thus, this animal represents an excellent model to study cold adaptation mechanism. We report that the adipogenic factor PPARgamma exhibits a differential expression between BAT and WAT at mRNA level. A specific induction was only seen in WAT of pre-hibernating jerboa. Interestingly, PPAR beta/delta is specifically induced in BAT and brain of pre-hibernating jerboa, highlighting for the first time the po…

Hibernationmedicine.medical_specialtyAcclimatizationPeroxisome Proliferator-Activated ReceptorsPeroxisome proliferator-activated receptorAdipose tissueRodentiaWhite adipose tissueBiologyBiochemistryAcyl-CoA DehydrogenaseIon ChannelsMitochondrial ProteinsClofibric AcidInternal medicineHibernationBrown adipose tissuemedicineAcyl-CoA oxidaseAnimalsRNA MessengerUncoupling Protein 1chemistry.chemical_classificationFibric AcidsMembrane ProteinsGeneral MedicineLipid MetabolismLipidsMitochondriaCold TemperatureEndocrinologymedicine.anatomical_structurechemistryAdipose TissueGene Expression RegulationPhospholipasesCiprofibrateAcyl-CoA OxidaseCarrier ProteinsEnergy MetabolismOxidoreductasesThermogenesismedicine.drugBiochimie
researchProduct

Human Peroxisomal 3-Ketoacyl-CoA Thiolase: Tissue Expression and Metabolic Regulation

2020

This paper reports that the human peroxisomal 3-ketoacyl-CoA thiolase expression shows three transcripts: Tr1 (1705 bp), Tr2 (1375 bp) and Tr3 (1782 bp). Their highest expression is observed in the human liver and at a lesser extent in hepatic-derived HepG2 cells. The intestine and blood and endothelial cells show lower expression. The lowest expression is found in adipocytes. The transcript Tr3 appears to be the most abundant. So far, no data have been published regarding the regulation of the human peroxisomal thiolase. After cloning a fragment of the 5′ region involved in the regulation of the human thiolase gene, the effects of different treatments have been studied on the thiolase expr…

Hormone response element03 medical and health sciences0302 clinical medicineDownregulation and upregulationChemistryThiolaseResponse element030212 general & internal medicineBinding sitePeroxisomeMolecular biologyGeneTranscription factor
researchProduct

Altérations mitochondriales et processus inflammatoire dans la déficience en acyl- Coenzyme A oxydase 1 peroxysomale

2012

Acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme of the peroxisomal fatty acid β-oxidation pathway of very-long-chain fatty acid (VLCFAs). In humans, ACOX1 deficiency, also called pseudo-neonatal adrenoleukodystrophy, is an autosomal recessive and a severe form of the peroxisomal β-oxidation deficiency. Patients suffer from severe delayed motor development followed by a progressive neurological regression including progressive hypodensity of cerebral white matter, hepatomegaly and deafness and die during late-infantile period. Elevated plasma and tissues VLCFAs levels are detected in these patients. Mice lacking ACOX1 develop severe microvesicular steatohepatitis with increased intrah…

Inflammation[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesVLCFACholesterolCholestérolPeroxisomeMitochondrieACOX1Peroxysome[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesMitochondriaAGTLC
researchProduct

Cigarette smoke increases BLT2 receptor functions in bronchial epithelial cells: in vitro and ex vivo evidence

2013

Summary Leukotriene B4 (LTB4) is a neutrophil chemotactic molecule with important involvement in the inflammatory responses of chronic obstructive pulmonary disease (COPD). Airway epithelium is emerging as a regulator of innate immune responses to a variety of insults including cigarette smoke, the major risk factor for COPD. In this study we have explored whether cigarette smoke extracts (CSE) or soluble mediators present in distal lung fluid samples (mini-bronchoalveolar lavages) from smokers alter the expression of the LTB4 receptor 2 (BLT2) and peroxisome proliferator-activated receptor-α (PPAR-α) in bronchial epithelial cells. We also evaluated the effects of CSE on the expression of i…

Leukotriene B4NeutrophilsImmunologyIntercellular Adhesion Molecule-1Blotting WesternReceptors Leukotriene B4Peroxisome proliferator-activated receptorSettore MED/41 - AnestesiologiaInflammationBronchiBiologychronic obstructive pulmonary diseasechemistry.chemical_compoundTobaccoacute lung injiurybronchial epithelial cellleukotriene B4.medicineCell AdhesionImmunology and AllergyHumansPPAR alphaReceptorPromoter Regions GeneticCells Culturedchemistry.chemical_classificationInnate immune systemPlant Extractscigarette smokeSmokingEpithelial CellsOriginal Articlesrespiratory systemFlow CytometryIntercellular Adhesion Molecule-1Neutrophiliarespiratory tract diseasesacute lung injiury; bronchial epithelial cells; cigarette smoke; chronic obstructive pulmonary disease; inflammation; leukotriene B4.STAT1 Transcription FactorchemistryinflammationImmunologyRespiratory epitheliumRNA Interferencemedicine.symptomBronchoalveolar Lavage FluidProtein Binding
researchProduct

Differences in cell proliferation in rodent and human hepatic derived cell lines exposed to ciprofibrate.

2005

International audience; Humans appear to be refractory to some effects of peroxisome proliferators including alterations in cell proliferation, whereas rodents are susceptible. In this study, differences between the human and rat response to peroxisome proliferators were evaluated using rat and human tumour liver cell lines. Rat 7777 cells were more responsive than human HepG2 cells to ciprofibrate as they exhibited a higher decrease in cell number than HepG2, and underwent apoptosis. Results from these studies reveal a surprising response in tumour cell lines as the typical in vivo response of increased cell proliferation and reduced apoptosis was not observed in rat tumour cell lines at c…

MESH : Cell LineCancer ResearchRodentApoptosisMESH : Dose-Response Relationship DrugCell LineClofibric AcidIn vivobiology.animalmedicineMESH : Cell ProliferationAnimals[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyCell ProliferationHypolipidemic AgentsDose-Response Relationship DrugbiologyCell growthMESH : RatsFibric AcidsMESH : LiverMESH : Clofibric AcidRatsCell biologyLiverOncologyApoptosisCell cultureHepg2 cellsCancer researchPeroxisome proliferator-activated receptor alphaCiprofibrateMESH : AnimalsMESH : Apoptosismedicine.drugMESH : Antilipemic Agents
researchProduct

Modulation of the hepatic fatty acid pool in peroxisomal 3-ketoacyl-CoA thiolase B-null mice exposed to the selective PPARalpha agonist Wy14,643

2009

10 pages; International audience; The peroxisomal 3-ketoacyl-CoA thiolase B (Thb) gene was previously identified as a direct target gene of PPARalpha, a nuclear hormone receptor activated by hypolipidemic fibrate drugs. To better understand the role of ThB in hepatic lipid metabolism in mice, Sv129 wild-type and Thb null mice were fed or not the selective PPARalpha agonist Wy14,643 (Wy). Here, it is shown that in contrast to some other mouse models deficient for peroxisomal enzymes, the hepatic PPARalpha signaling cascade in Thb null mice was normal under regular conditions. It is of interest that the hypotriglyceridemic action of Wy was reduced in Thb null mice underlining the conclusion t…

MESH : RNA MessengerMESH: Microsomes LiverMESH : PyrimidinesMono-unsaturated fatty acids n-7 and n-9MESH : Hepatocytes[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH: Mice KnockoutPPARαBiochemistryMESH: Acetyl-CoA C-AcetyltransferaseStearoyl-CoA desaturase-1MESH: HepatocytesMicechemistry.chemical_compoundMESH : Lipid MetabolismWy14MESH: AnimalsPeroxisomal 3-ketoacyl-CoA thiolase BAcetyl-CoA C-AcetyltransferaseMESH: PPAR alphaMESH : Fatty AcidsMESH: Lipid MetabolismMice Knockoutchemistry.chemical_classificationThiolaseFatty Acids643General MedicinePeroxisomeMESH : Stearoyl-CoA DesaturaseMESH: Fatty AcidsMESH : Microsomes LiverMESH : Acetyl-CoA C-AcetyltransferaseMicrosomes LiverMono-unsaturated fatty acids n-7 and n-9; Peroxisomal 3-ketoacyl-CoA thiolase B; PPARα; Stearoyl-CoA desaturase-1; Wy14643lipids (amino acids peptides and proteins)Stearoyl-CoA DesaturasePolyunsaturated fatty acidmedicine.medical_specialtyMESH : PPAR alphaMESH : Mice Inbred C57BL[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyBiologyMESH: Mice Inbred C57BLInternal medicineMESH : MicePeroxisomesmedicineAnimalsHumansPPAR alphaRNA MessengerMESH: MiceMESH: RNA MessengerSCP2MESH: HumansMESH : HumansFatty acid[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyStearoyl-CoALipid MetabolismMESH: PeroxisomesSterol regulatory element-binding proteinMice Inbred C57BLPyrimidinesEndocrinologychemistryMESH: PyrimidinesMESH: Stearoyl-CoA DesaturaseHepatocytesMESH : Mice KnockoutMESH : AnimalsStearoyl-CoA desaturase-1MESH : PeroxisomesBiochimie
researchProduct

The Inflammatory Response in Acyl-CoA Oxidase 1 Deficiency (Pseudoneonatal Adrenoleukodystrophy)

2012

Among several peroxisomal neurodegenerative disorders, the pseudoneonatal adrenoleukodystrophy (P-NALD) is characterized by the acyl-coenzyme A oxidase 1 (ACOX1) deficiency, which leads to the accumulation of very-long-chain fatty acids ( VLCFA) and inflammatory demyelination. However, the components of this inflammatory process in P-NALD remain elusive. In this study, we used transcriptomic profiling and PCR array analyses to explore inflammatory gene expression in patient fibroblasts. Our results show the activation of IL-1 inflammatory pathway accompanied by the increased secretion of two IL-1 target genes, IL-6 and IL-8 cytokines. Human fibroblasts exposed to very-long-chain fatty acids…

MESH: Inflammationperoxisomal disordersMESH: Osteopontinmedicine.medical_treatmentMESH : ImmunohistochemistryMESH : Transcriptomechemokine receptorsVoeding Metabolisme en Genomica0302 clinical medicineEndocrinologyMESH: Reverse Transcriptase Polymerase Chain ReactionAcyl-CoA oxidasemultiple-sclerosis lesionsMESH : OsteopontinMESH : Fatty AcidsCells CulturedOligonucleotide Array Sequence Analysis[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism0303 health sciencesOxidase testMESH : Gene Expression RegulationReverse Transcriptase Polymerase Chain ReactionFatty AcidsMESH: Acyl-CoA OxidaseMESH : Reverse Transcriptase Polymerase Chain ReactionPeroxisome[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismImmunohistochemistryMESH: Gene Expression RegulationMetabolism and Genomics3. Good healthMESH: Fatty AcidsMESH : Oligonucleotide Array Sequence AnalysisCytokineMetabolisme en GenomicaACOX1AdrenoleukodystrophyNutrition Metabolism and GenomicsMESH : Acyl-CoA Oxidasemedicine.symptomInflammation MediatorsMESH: Cells Culturedmedicine.medical_specialtyMESH : Interleukin-8MESH : Interleukin-6MESH: Inflammation MediatorsInflammationBiologyin-vitroMESH : Interleukin-1MESH : Inflammation Mediators03 medical and health sciencesVoedingInternal medicinePeroxisomal disordernf-kappa-bMESH : Cells CulturedMESH : Fibroblastsmedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologygene[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyNutrition030304 developmental biologyVLAGInflammationMESH: HumansMESH : InflammationInterleukin-6MESH: TranscriptomeInterleukin-8MESH : HumansMESH: Interleukin-1MESH: ImmunohistochemistryFibroblastsmedicine.diseaseMESH: Interleukin-6MESH: Interleukin-8EndocrinologyGene Expression RegulationMESH: FibroblastsMESH: Oligonucleotide Array Sequence AnalysiscellsBrief ReportsOsteopontinmicroarray analysisAcyl-CoA OxidaseTranscriptomeinterleukin-1030217 neurology & neurosurgeryx-linked adrenoleukodystrophyInterleukin-1
researchProduct

The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity

2009

T helper cells secreting interleukin (IL)-17 (Th17 cells) play a crucial role in autoimmune diseases like multiple sclerosis (MS). Th17 differentiation, which is induced by a combination of transforming growth factor (TGF)-beta/IL-6 or IL-21, requires expression of the transcription factor retinoic acid receptor-related orphan receptor gamma t (ROR gamma t). We identify the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) as a key negative regulator of human and mouse Th17 differentiation. PPAR gamma activation in CD4(+) T cells selectively suppressed Th17 differentiation, but not differentiation into Th1, Th2, or regulatory T cells. Control of Th17 differentia…

MESH: Nuclear Receptor Subfamily 1 Group F Member 3Helper-InducerReceptors Retinoic AcidT-LymphocytesMESH: Interleukin-17Cellular differentiationRetinoic AcidPeroxisome proliferator-activated receptorNeurodegenerativeInbred C57BLMedical and Health SciencesMiceInterleukin 210302 clinical medicineGroup FRAR-related orphan receptor gammaMESH: Nuclear Receptor Co-Repressor 2Receptors2.1 Biological and endogenous factorsThyroid HormoneImmunology and AllergyMESH: AnimalsAetiologyEncephalomyelitisPromoter Regions Geneticchemistry.chemical_classificationOrphan receptor0303 health sciencesReceptors Thyroid HormoneInterleukin-17Cell DifferentiationT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 33. Good healthCell biologyDNA-Binding Proteinsmedicine.anatomical_structureMESH: Repressor Proteins[SDV.IMM]Life Sciences [q-bio]/ImmunologyInterleukin 17MESH: Cell Differentiationmedicine.medical_specialtyEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisNuclear Receptor Subfamily 1Member 31.1 Normal biological development and functioningT cellImmunologyBiologyAutoimmune DiseasePromoter RegionsExperimental03 medical and health sciencesGeneticUnderpinning researchMESH: Mice Inbred C57BLInternal medicineMESH: Promoter Regions GeneticGeneticsmedicineAnimalsHumansNuclear Receptor Co-Repressor 2MESH: Receptors Thyroid HormoneMESH: T-Lymphocytes Helper-InducerMESH: Encephalomyelitis Autoimmune ExperimentalMESH: Mice030304 developmental biologyMESH: Receptors Retinoic AcidMESH: HumansInflammatory and immune systemNeurosciencesBrief Definitive ReportCorrectionMESH: Multiple SclerosisBrain DisordersMice Inbred C57BLPPAR gammaRepressor ProteinsEndocrinologyMESH: PPAR gammaNuclear receptorchemistryMESH: DNA-Binding Proteins030217 neurology & neurosurgeryAutoimmuneJournal of Experimental Medicine
researchProduct

Peroxisomal beta-oxidation activities and gamma-decalactone production by the yeast Yarrowia lipolytica.

1998

International audience; gamma-Decalactone is a peachy aroma compound resulting from the peroxisomal beta-oxidation of ricinoleic acid by yeasts. The expression levels of acyl-CoA oxidase (gene deletion) and 3-ketoacyl-CoA thiolase activities (gene amplification on replicative plasmids) were modified in the yeast Yarrowia lipolytica. The effects of these modifications on beta-oxidation were measured. Overexpression of thiolase activity did not have any effect on the overall beta-oxidation activity. The disruption of one of the acyl-CoA oxidase genes resulted in an enhanced activity. The enhancement led to an increase of overall beta-oxidation activity but reduced the gamma-decalactone produc…

MESH: Oxidation-ReductionRicinoleic acidMESH: MicrobodiesMicrobodiesApplied Microbiology and BiotechnologyAROME DE PECHELactoneschemistry.chemical_compoundMESH : BiotransformationYeastsMESH : Microbodies[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAcyl-CoA oxidaseMESH: Blotting NorthernNorthern[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[INFO.INFO-BT]Computer Science [cs]/Biotechnology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyBiotransformationMESH : Oxidation-ReductionMESH: BiotransformationMESH : YeastsOxidase testbiologyBlottingCatabolismThiolaseMESH: YeastsMESH : Blotting NorthernYarrowiaGeneral MedicinePeroxisomeBlotting Northernbiology.organism_classificationYeastMESH : LactonesMESH: Ricinoleic Acids[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology[INFO.INFO-BT] Computer Science [cs]/BiotechnologyBiochemistrychemistryMESH : Ricinoleic AcidsACYL COA OXYDASERicinoleic AcidsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: LactonesBiotechnology
researchProduct

Clinical and Biochemical Features in a Patient With Mitochondrial Fission Factor Gene Alteration

2018

Mitochondrial Fission Factor (MFF) is part of a protein complex that promotes mitochondria and peroxisome fission. Hitherto, only 5 patients have been reported harboring mutations in MFF, all of them with the clinical features of a very early onset Leigh-like encephalopathy. We report on an 11-year-old boy with epileptic encephalopathy. He presented with neurological regression, epileptic myoclonic seizures, severe intellectual disability, microcephaly, tetraparesis, optic atrophy, and ophthalmoplegia. Brain MRI pattern was compatible with Leigh syndrome. NGS-based analysis of a gene panel for mitochondrial disorders revealed a homozygous c.892C>T (p. Arg298*) in the MFF gene. Fluorescen…

MFF0301 basic medicineMicrocephalyMitochondrial fission factorPathologymedicine.medical_specialtylcsh:QH426-470Mitochondrial diseaseEncephalopathyCase ReportMitochondrion03 medical and health sciencesmitochondrial disordersAtrophymitochondrial fission factorPeroxisomal disorderGeneticsmedicineperoxisomePeroxisome fissionGenetics (clinical)business.industryMFF; epileptic encephalopathy; leigh syndrome; mitochondria; mitochondrial disorders; mitochondrial fission factor; peroxisomemedicine.diseasemitochondrialcsh:Geneticsepileptic encephalopathy030104 developmental biologyleigh syndromeMolecular MedicinebusinessFrontiers in Genetics
researchProduct