Search results for "Phase"

showing 10 items of 6344 documents

Single crystal-like thin films of blue bronze

2021

Abstract Pulsed laser deposition technique was employed to grow thin films of K 0.3 M o O 3 on A l 2 O 3 (1-102) and S r T i O 3 (510) substrates. Structural and imaging characterization revealed good quality films with well oriented grains of few microns in length. Both non-selective (transport) and order-selective (femtosecond pump-probe spectroscopy) probes revealed charge density wave properties that are very close to those of the single crystals. The films exhibit metal-semiconductor phase transition in resistivity, pump-probe data show phase transition at the same temperature as the single crystal and the threshold for the photo-induced phase transition is approximately the same as in…

010302 applied physicsPhase transitionMaterials scienceMetals and AlloysAnalytical chemistry02 engineering and technologySurfaces and Interfaces021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPulsed laser depositionBlue bronze (BB) ; Charge density waves (CDW) ; Thin films ; Single crystal-like ; Ultrafast pump-probe spectroscopyElectrical resistivity and conductivity0103 physical sciencesFemtosecondMaterials ChemistryThin film0210 nano-technologySpectroscopySingle crystalCharge density waveThin Solid Films
researchProduct

The Grain Boundary Wetting Phenomena in the Ti-Containing High-Entropy Alloys: A Review

2021

In this review, the phenomenon of grain boundary (GB) wetting by melt is analyzed for multicomponent alloys without principal components (also called high-entropy alloys or HEAs) containing titanium. GB wetting can be complete or partial. In the former case, the liquid phase forms the continuous layers between solid grains and completely separates them. In the latter case of partial GB wetting, the melt forms the chain of droplets in GBs, with certain non-zero contact angles. The GB wetting phenomenon can be observed in HEAs produced by all solidification-based technologies. GB leads to the appearance of novel GB tie lines Twmin and Twmax in the multicomponent HEA phase diagrams. The so-cal…

010302 applied physicsPhase transitionMaterials scienceMining engineering. MetallurgyHigh entropy alloysMetals and AlloysTN1-997Titanium alloyThermodynamics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesphase transitionsContact anglePhase (matter)titanium alloys0103 physical sciencesgrain boundary wettingGeneral Materials ScienceGrain boundaryWetting0210 nano-technologyphase diagramsPhase diagramhigh-entropy alloys
researchProduct

Two-phase dielectric polar structures in 0.1NBT-0.6ST-0.3PT solid solutions

2018

Abstract In this work we address the peculiarities of the macroscopic responses in ternary 0.1Na0·5Bi0·5TiO3-0.6SrTiO3-0.3PbTiO3 (0.1NBT-0.6ST-0.3PT) solid solutions. These solid solutions exhibit a spontaneous first order relaxor to normal ferroelectric phase transition. The phase transition is accompanied by a broad dielectric relaxation which expands over 10 orders of magnitude in frequency just above the phase transition temperature. The temperature dependence of polarization shows that non-zero net polarization persists above the phase transition temperature. Below the phase transition temperature, it is not possible to describe the temperature dependence of polarization with a power l…

010302 applied physicsPhase transitionMaterials sciencePolymers and PlasticsCondensed matter physicsMetals and Alloys02 engineering and technologyDielectric021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesFerroelectricityElectronic Optical and Magnetic MaterialsCondensed Matter::Materials SciencePiezoresponse force microscopyPhase (matter)0103 physical sciencesCeramics and CompositesRelaxation (physics)0210 nano-technologySolid solutionBauwissenschaften
researchProduct

Study of the thermochromic phase transition in CuMo1−xWxO4 solid solutions at the W L3-edge by resonant X-ray emission spectroscopy

2021

Abstract Polycrystalline CuMo 1 − x W x O 4 solid solutions were studied by resonant X-ray emission spectroscopy (RXES) at the W L 3 -edge to follow a variation of the tungsten local atomic and electronic structures across thermochromic phase transition as a function of sample composition and temperature. The experimental results were interpreted using ab initio calculations. The crystal-field splitting parameter Δ for the 5d(W)-states was obtained from the analysis of the RXES plane and was used to evaluate the coordination of tungsten atoms. Temperature-dependent RXES measurements were successfully employed to determine the hysteretic behaviour of the structural phase transition between t…

010302 applied physicsPhase transitionMaterials sciencePolymers and PlasticsMetals and AlloysAnalytical chemistrychemistry.chemical_element02 engineering and technologyAtmospheric temperature rangeTungsten021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialschemistryAb initio quantum chemistry methodsCrystal field theory0103 physical sciencesCeramics and CompositesCrystalliteEmission spectrum0210 nano-technologySolid solutionActa Materialia
researchProduct

Dielectric behaviour of BaTi1-xZrxO3ceramics obtained by means of a solid state and mechanochemical synthesis

2016

ABSTRACTIn this study the comparison of dielectric behaviour of BaTi1-xZrxO3 (BTZx) ceramic samples prepared by means of a solid state and mechanochemical synthesis was presented. A single phase of perovskite structure was identified in the samples at room temperature. No significant impurities were detected in an EDS spectrum and the samples had a good stoichiometric ratio. The morphology of the investigated samples was characterized by a scanning electron microscopy (SEM). The investigation of dielectric properties of the BTZx samples within the temperature range from 140 K to 600 K was performed by means of a dielectric spectroscopy method at the frequency ranging from 0.1 Hz to 10 MHz. …

010302 applied physicsPhase transitionMaterials scienceScanning electron microscopeAnalytical chemistry02 engineering and technologyDielectricAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsDielectric spectroscopyImpurityvisual_art0103 physical sciencesvisual_art.visual_art_mediumCeramic0210 nano-technologyStoichiometryFerroelectrics
researchProduct

Effects of water removal on the structure and spin-crossover in an anilato-based compound

2021

The crucial role played by a crystallization water molecule in the spin crossover (SCO) temperature and its hysteresis is described and discussed in compound [NBu4][Fe(bpp)2][Cr(C6O4Br2)3]⋅2.5H2O (1), where bpp = 2,6-bis(pyrazol-3-yl)pyridine and (C6O4Br2)2− = dianion of the 3,6-dibromo-2,5-dihydroxy-1,4-benzoquinone. The compound has isolated [Fe(bpp)2]2+ cations surrounded by chiral [Cr(C6O4Br2)3]3− anions, NBu4+ cations, and a water molecule H-bonded to one of the non-coordinated N–H groups of one bpp ligand. This complex shows a gradual almost complete two-step spin transition centered at ca. 180 and 100 K with no hysteresis. The loss of the water molecules results in a phase transition…

010302 applied physicsPhase transitionMaterials scienceSpin transitionGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLIESSTCrystallographychemistry.chemical_compoundchemistrySpin crossoverExcited statePhase (matter)0103 physical sciencesPyridineMolecule0210 nano-technologyJournal of Applied Physics
researchProduct

Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire

2020

A detailed structural investigation of the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films deposited on sapphire substrates by pulsed laser deposition was performed by in situ temperature-dependent X-ray diffraction (XRD) measurements. The structural results are correlated with those of infrared radiometry measurements in the SWIR (2.5-5 μm) and LWIR (8-10.6 μm) spectral ranges. The main results indicate a good agreement between XRD and optical analysis, therefore demonstrating that the structural transition from monoclinic to tetragonal phases is the dominating mechanism for controlling the global properties of the SMT transition. The picture that emerges is a SMT tr…

010302 applied physicsPhase transitionMaterials scienceTransition temperatureAnalytical chemistryPulsed laser depositionphase change material; VO202 engineering and technologyVO2 thin films021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaPulsed laser depositionTetragonal crystal systemVO20103 physical sciencesSapphireThermal hysteresisGeneral Materials ScienceCrystalliteThin film0210 nano-technologyphase change materialMonoclinic crystal systemSemiconductor-to-metal (SMT) transition
researchProduct

Phase transitions in Na0.5Bi0.5TiO3-(Sr0.7Bi0.2)TiO3-PbTiO3 solid solutions

2016

ABSTRACTIncreasing of Sr0.7Bi0.2TiO3 concentration in Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 solid solutions causes increasing of Bi/Na relation and vacancies in the A-site of perovskite structure. In temperature dependence of dielectric permittivity, such a change of composition is reflected by transforming of the frequency-dependent shoulder into a maximum characteristic for relaxor ferroelectrics and diminishing of the frequency-independent maximum characteristic for Na0.5Bi0.5TiO3. Here changes in behavior of dielectric permittivity and polarization are studied if PbTiO3 is added in a certain concentration range of Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 solid solutions. Changes of the characteristic temp…

010302 applied physicsPhase transitionRange (particle radiation)Materials scienceCondensed matter physicsDielectric permittivity02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materials0103 physical sciencesElectrocaloric effect0210 nano-technologyPolarization (electrochemistry)Solid solutionFerroelectrics
researchProduct

Structural phase transition in [(C2H5)4N][(CH3)4N]ZnCl4

2019

The hybrid crystal [(C2H5)4N][(CH3)4N]ZnCl4 was studied using several experimental methods. DSC studies revealed the first order phase transition to the high temperature phase at about 496 K. This phase transition was confirmed in dielectric studies. Optical observation revealed the domain structure appearance characteristic for that of the phase transition between tetragonal and orthorhombic phases. This phase transition shows a lowering of symmetry as in the case of bromide analogs. Additionally, the optical studies showed the appearance of a number of cracks in the sample and in some cases, the samples became milky after cooling from the high temperature to the room temperature phase.

010302 applied physicsPhase transitionStructural phaseMaterials scienceThermodynamics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystalPhase (matter)0103 physical sciencesGeneral Materials ScienceExperimental methods0210 nano-technologyOrganic–inorganic hybrid compounds; phase transitions; thermal and dielectric properties; ferroelastic domainsInstrumentationPhase Transitions
researchProduct

Scaling up electrically synchronized spin torque oscillator networks

2018

AbstractSynchronized nonlinear oscillators networks are at the core of numerous families of applications including phased array wave generators and neuromorphic pattern matching systems. In these devices, stable synchronization between large numbers of nanoscale oscillators is a key issue that remains to be demonstrated. Here, we show experimentally that synchronized spin-torque oscillator networks can be scaled up. By increasing the number of synchronized oscillators up to eight, we obtain that the emitted power and the quality factor increase linearly with the number of oscillators. Even more importantly, we demonstrate that the stability of synchronization in time exceeds 1.6 millisecond…

010302 applied physicsPhysicsMultidisciplinaryPhased arrayOscillationlcsh:Rlcsh:Medicine02 engineering and technology021001 nanoscience & nanotechnologyTopology01 natural sciencesStability (probability)SynchronizationArticlePower (physics)Quality (physics)Neuromorphic engineering0103 physical scienceslcsh:Q0210 nano-technologylcsh:ScienceScalingScientific Reports
researchProduct