Search results for "Phenylpropanoid"

showing 4 items of 14 documents

Cryptogein, a fungal elicitor, remodels the phenylpropanoid metabolism of tobacco cell suspension cultures in a calcium-dependent manner

2010

Plant cells use calcium-based signalling pathways to transduce biotic and/or abiotic stimuli into adaptive responses. However, little is known about the coupling between calcium signalling, transcriptional regulation and the downstream biochemical processes. To understand these relationships better, we challenged tobacco BY-2 cells with cryptogein and evaluated how calcium transients (monitored through the calcium sensor aequorin) impact (1) transcript levels of phenylpropanoid genes (assessed by RT-qPCR); and (2) derived-phenolic compounds (analysed by mass spectrometry). Most genes of the phenylpropanoid pathway were up-regulated by cryptogein and cell wall-bound phenolic compounds accumu…

0106 biological sciencesCalcium metabolism0303 health sciencesFungal proteinbiologyPhenylpropanoidPhysiologyAequorinchemistry.chemical_elementPlant ScienceCalcium01 natural sciencesElicitor03 medical and health scienceschemistryBiochemistryTranscriptional regulationbiology.protein030304 developmental biology010606 plant biology & botanyCalcium signalingPlant, Cell & Environment
researchProduct

LC–ESI–FT–MSn Metabolite Profiling of Symphytum officinale L. Roots Leads to Isolation of Comfreyn A, an Unusual Arylnaphthalene Lignan

2020

Preparations of comfrey (Symphytum officinale L.) roots are used topically to reduce inflammation. Comfrey anti-inflammatory and analgesic properties have been proven in clinical studies. However, the bioactive compounds associated with these therapeutic activities are yet to be identified. An LC&ndash

Spectrometry Mass Electrospray Ionizationcomfrey rootsMetaboliteAnti-Inflammatory AgentsComfreySymphytum officinalePlant Roots01 natural sciencescomfreyn AArticleCatalysisUmbilical veinInorganic Chemistrylcsh:Chemistrychemistry.chemical_compoundLC–ESI–Orbitrap–MSComfreyHuman Umbilical Vein Endothelial CellsSymphytum officinaleHumans<i>Symphytum officinale</i>Physical and Theoretical ChemistryGloboidnan AMolecular Biologylcsh:QH301-705.5SpectroscopyLignanPlants MedicinalChromatographyMolecular StructurebiologyChemistry010401 analytical chemistryOrganic ChemistryComfrey roots; Comfreyn A; LC–ESI–Orbitrap–MS; Phenylpropanoids; Symphytum officinaleGeneral Medicinebiology.organism_classification0104 chemical sciencesComputer Science Applications010404 medicinal & biomolecular chemistrylcsh:Biology (General)lcsh:QD1-999Metabolite profilingTwo-dimensional nuclear magnetic resonance spectroscopyChromatography LiquidphenylpropanoidsInternational Journal of Molecular Sciences
researchProduct

Transcriptome analysis and codominant markers development in caper, a drought tolerant orphan crop with medicinal value.

2019

AbstractCaper (Capparis spinosa L.) is a xerophytic shrub cultivated for its flower buds and fruits, used as food and for their medicinal properties. Breeding programs and even proper taxonomic classification of the genus Capparis has been hampered so far by the lack of reliable genetic information and molecular markers. Here, we present the first genomic resource for C. spinosa, generated by transcriptomic approach and de novo assembly. The sequencing effort produced nearly 80 million clean reads assembled into 124,723 unitranscripts. Careful annotation and comparison with public databases revealed homologs to genes with a key role in important metabolic pathways linked to abiotic stress t…

0301 basic medicineCapparisAgricultural geneticsabiotic stressSAPsPlant geneticsScienceDrought toleranceSequence assemblyComputational biologyBiologyArticleTranscriptome03 medical and health sciences0302 clinical medicinefoodStress PhysiologicalEST-SSRGeneorphan cropPlant Proteinsde novo leaf transcriptomeMultidisciplinaryPlants MedicinalPhenylpropanoidAbiotic stressSettore BIO/02 - Botanica SistematicaCapparis spinosaGene Expression ProfilingCaper Capparis spinosa Codominant markers Transcriptome analysis Orphan cropQRfood and beveragesbiology.organism_classificationfood.foodCapparis spinosa L.DroughtsCapparis030104 developmental biologyNGSMedicineTranscriptome030217 neurology & neurosurgeryBiomarkersMetabolic Networks and PathwaysScientific reports
researchProduct

Elicitor and resistance-inducing activities of -1,4 cellodextrins in grapevine, comparison with -1,3 glucans and -1,4 oligogalacturonides

2007

Cellodextrins (CD), water-soluble derivatives of cellulose composed of beta-1,4 glucoside residues, have been shown to induce a variety of defence responses in grapevine (Vitis vinifera L.) cells. The larger oligomers of CD rapidly induced transient generation of H2O2 and elevation in free cytosolic calcium, followed by a differential expression of genes encoding key enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins as well as stimulation of chitinase and beta-1,3 glucanase activities. Most of these defence reactions were also induced by linear beta-1,3 glucans (betaGlu) and alpha-1,4 oligogalacturonides (OGA) of different degree of polymerization (DP), but the i…

0106 biological sciencesPhysiology[SDV]Life Sciences [q-bio]Plant ScienceBiology01 natural sciences03 medical and health sciencesGene expressionBotanyGRAPEVINE[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologychemistry.chemical_classification0303 health sciencesPhenylpropanoidINDUCED RESISTANCEOligosaccharideGlucanaseElicitor[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyCytosolEnzymechemistryBiochemistryChitinasebiology.proteinCELLODEXTRINSDEFENCE RESPONSES010606 plant biology & botany
researchProduct