Search results for "Phosphate"

showing 10 items of 1874 documents

Adenosine monophosphate-capped gold(i) nanoclusters: synthesis and lanthanide ion-induced enhancement of their luminescence

2016

Reduction of Au3+ in the presence of just adenosine 5′-monophosphate (AMP) and a zwitterionic organic chemical buffering agent, specifically 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), combined with light exposure, gives rise to luminescent, water-soluble Au+ nanoclusters (Au+ NCs). The photoluminescence of these NCs is considerably enhanced by adding Y3+ or the chemically similar Yb3+ lanthanide that leads to Au+/Y3+ and Au+/Yb3+ NCs, respectively. These NCs are characterised by absorption (steady-state), photoluminescence (steady-state and time-resolved), and X-ray photoelectron spectroscopy.

Adenosine monophosphateHEPESLanthanidePhotoluminescenceGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesNanoclusterschemistry.chemical_compoundchemistryX-ray photoelectron spectroscopyAbsorption (chemistry)0210 nano-technologyLuminescenceRSC Advances
researchProduct

Flying insects: model systems in exercise physiology

1996

Insect flight is the most energy-demanding exercise known. It requires very effective coupling of adenosine triphosphate (ATP) hydrolysis and regeneration in the working flight muscles.31P nuclear magnetic resonance (NMR) spectroscopy of locust flight muscle in vivo has shown that flight causes only a small decrease in the content of ATP, whereas the free concentrations of inorganic phosphate (P i ), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were estimated to increase by about 3-, 5- and 27-fold, respectively. These metabolites are potent activators of glycogen phosphorylase and phosphofructokinase (PFK). Activation of glycolysis by AMP and P i is reinforced synergistica…

Adenosine monophosphateInsectaMagnetic Resonance SpectroscopyPhysical ExertionGrasshoppersCarbohydrate metabolismBiologyModels BiologicalPhosphatesCellular and Molecular Neurosciencechemistry.chemical_compoundGlycogen phosphorylaseAnimalsGlycolysisMolecular BiologyPharmacologyAdenine NucleotidesCell BiologyAdenosine diphosphateFructose 26-bisphosphatechemistryBiochemistryFlight AnimalMolecular MedicineEnergy MetabolismGlycolysisAdenosine triphosphateMuscle ContractionPhosphofructokinaseExperientia
researchProduct

Control of adenine nucleotide metabolism and glycolysis in vertebrate skeletal muscle during exercise.

1996

The turnover of adenosine triphosphate (ATP) in vertebrate skeletal muscle can increase more than a hundredfold during high-intensity exercise, while the content of ATP in muscle may remain virtually unchanged. This requires that the rates of ATP hydrolysis and ATP synthesis are exactly balanced despite large fluctuations in reaction rates. ATP is regenerated initially at the expense of phosphocreatine (PCr) and then mainly through glycolysis from muscle glycogen. The increased ATP turnover in contracting muscle will cause an increase in the contents of adenosine diphosphate (ADP), adenosine monophosphate (AMP) and inorganic phosphate (P(i)), metabolites that are substrates and activators o…

Adenosine monophosphatePhosphocreatinePhysical ExertionBiologyPhosphocreatineCellular and Molecular Neurosciencechemistry.chemical_compoundATP hydrolysismedicineAnimalsHomeostasisGlycolysisMuscle SkeletalMolecular BiologyPharmacologyATP synthaseAdenine NucleotidesSkeletal muscleCell BiologyAdenosine diphosphatemedicine.anatomical_structurechemistryBiochemistryVertebratesbiology.proteinMolecular Medicinemedicine.symptomEnergy MetabolismGlycolysisMuscle contractionExperientia
researchProduct

Differences In Methacholine- And Adenosine 5-Monophosphate-Induced Changes In Forced Vital Capacity Between Methacholine-Responsive Subjects With All…

2012

Adenosine monophosphatechemistry.chemical_compoundVital capacitychemistrybusiness.industryImmunologymedicineMethacholinemedicine.diseasebusinessmedicine.drugAsthmaC38. ADVANCES IN ASTHMA AND COPD SCREENING AND MONITORING
researchProduct

The Effect of Natural Allergen Exposure on the Maximal Response Plateau to Adenosine 5′-monophosphate and on Exhaled Nitric Oxide of Alveolar and Bro…

2010

Adenosine monophosphatechemistry.chemical_compoundchemistryMaximal response plateauImmunologyExhaled nitric oxideImmunologyImmunology and AllergyALLERGEN EXPOSUREPollen AllergyJournal of Allergy and Clinical Immunology
researchProduct

Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores

2016

[EN] The label¿free detection of pyrophosphate (PPi) anions with a nanofluidic sensing device based on asymmetric nanopores is demonstrated. The pore surface is functionalized with zinc complexes based on two di(2¿picolyl)amine [bis(DPA)] moieties using carbodiimide coupling chemistry. The complexation of zinc (Zn2+) ion is achieved by exposing the modified pore to a solution of zinc chloride to form bis(Zn2+¿DPA) complexes. The chemical functionalization is demonstrated by recording the changes in the observed current¿voltage (I¿V) curves before and after pore modification. The bis(Zn2+¿DPA) complexes on the pore walls serve as recognition sites for pyrophosphate anion. The experimental re…

Adenosine monophosphatechemistry.chemical_elementNanotechnology02 engineering and technologyZincPicolinic acid010402 general chemistry01 natural sciencesPyrophosphateBiomaterialsNanoporeschemistry.chemical_compoundPolymer chemistryGeneral Materials ScienceAminesPicolinic AcidsStaining and LabelingGeneral Chemistry021001 nanoscience & nanotechnologyPhosphate0104 chemical sciencesDiphosphatesAdenosine diphosphatechemistryFISICA APLICADASurface modificationAmine gas treating0210 nano-technologyBiotechnologySmall
researchProduct

Pharmacological analysis of intrinsic neural control of rat duodenum motility in vitro

1988

Adenosine monophosphatemedicine.medical_specialtyDuodenumMotilitychemistry.chemical_compoundAdenosine TriphosphateAdenine nucleotideInternal medicinemedicineAnimalsPharmacologyAdenine NucleotidesMuscle SmoothAdenosine MonophosphateElectric StimulationIn vitroRatsAdenosine DiphosphateAdenosine diphosphateEndocrinologymedicine.anatomical_structurechemistryDuodenummedicine.symptomGastrointestinal MotilityAdenosine triphosphateMuscle ContractionMuscle contractionPharmacological Research Communications
researchProduct

Biokinetisches Verhalten und Stoffwechselwirkungen von Fructose bei hochdosierter Dauerinfusion an der Ratte

1976

The steady-state blood level of fructose during 24 hours intravenous infusion in response to different doses follows saturation kinetics. Even after toxic doses of 1.5 g/kg/h no depletion of liver adenine nucleotides can be observed after 24 hours. In the kidneys, however, ATP, ADP and total adenine nucleotides were decreased after a dose of 1.5 g/kg/h of fructose. The blood glucose increased continuously at infusion rates of 1.5 g/kg/h. Inorganic phosphate in the blood increased at doses of 1.0 and 1.5 g/kg/h. The weight of the kidneys increased, presumably through water uptake. Urinary secretion was drastically reduced at doses above 1.0 g/kg/h. An appreciable activity of ketohexokinase c…

Adenosine monophosphatemedicine.medical_specialtyKidneyUrinary systemMedicine (miscellaneous)FructoseBiochemistrychemistry.chemical_compoundAdenosine diphosphateEndocrinologymedicine.anatomical_structurechemistryAdenine nucleotideInternal medicineWater uptakemedicineAdenosine triphosphateFood ScienceZeitschrift für Ernährungswissenschaft
researchProduct

CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death

2011

Abstract Extracellular adenosine (ADO), generated from ATP or ADP through the concerted action of the ectoenzymes CD39 and CD73, elicits autocrine and paracrine effects mediated by type 1 purinergic receptors. We have tested whether the expression of CD39 and CD73 by chronic lymphocytic leukemia (CLL) cells activates an adenosinergic axis affecting growth and survival. By immunohistochemistry, CD39 is widely expressed in CLL lymph nodes, whereas CD73 is restricted to proliferation centers. CD73 expression is highest on Ki-67+ CLL cells, adjacent to T lymphocytes, and is further localized to perivascular areas. CD39+/CD73+ CLL cells generate ADO from ADP in a time- and concentration-dependen…

AdenosineCellular differentiationChronic lymphocytic leukemia5'-Nucleotidase; Adenosine; Adenosine Diphosphate; Adenosine Triphosphate; Antigens CD; Antineoplastic Agents Phytogenic; Apyrase; Autocrine Communication; Cell Death; Cell Differentiation; Cell Movement; Cell Survival; Etoposide; Extracellular Space; GPI-Linked Proteins; Humans; Leukemia Lymphocytic Chronic B-Cell; Paracrine Communication; Receptor Adenosine A2A; Tumor Cells Cultured; Biochemistry; Immunology; Hematology; Cell BiologyMICROENVIRONMENTCD38BiochemistryACTIVATIONAdenosine TriphosphateCell MovementPhytogenichemic and lymphatic diseasesTumor Cells CulturedChronic5'-NucleotidaseEtoposideLeukemiaCulturedCell DeathTUMOR-GROWTHApyrasePurinergic receptorCell DifferentiationHematologyLymphocyticCDTumor CellsCell biologyAdenosine DiphosphateAutocrine CommunicationLeukemiaReceptorIMMUNE SUPPRESSIONReceptor Adenosine A2ACell SurvivalImmunologyAntineoplastic AgentsAdenosinergicBiologyGPI-Linked ProteinsDAMAGE-INDUCED APOPTOSISAdenosine A2AParacrine signallingAntigens CDParacrine CommunicationmedicineHumansAntigensAutocrine signallingImmunobiologyB-CellCell BiologyDAMAGE-INDUCED APOPTOSIS; T-CELLS; IMMUNE SUPPRESSION; ZAP-70 EXPRESSION; TUMOR-GROWTH; RECEPTOR; CD73; ACTIVATION; CD38; MICROENVIRONMENTmedicine.diseaseAntineoplastic Agents PhytogenicLeukemia Lymphocytic Chronic B-CellSettore MED/15 - MALATTIE DEL SANGUET-CELLSCD73Extracellular SpaceZAP-70 EXPRESSIONCD38Blood
researchProduct

Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway.

2014

Abstract Dendritic cells (DC) are one target for immune suppression by regulatory T cells (Treg), because their interaction results in reduced T cell stimulatory capacity and secretion of inhibitory cytokines in DC. We show that DC in the presence of Treg are more mobile as compared with cocultures with conventional CD4+ T cells and form DC–Treg aggregates within 2 h of culture. The migration of DC was specifically directed toward Treg, as Treg, but not CD4+ T cells, attracted DC in Boyden chambers. Treg deficient for the ectonucleotidase CD39 were unable to attract DC. Likewise, addition of antagonists for A2A adenosine receptors abolished the formation of DC–Treg clusters, indicating a ro…

AdenosineRegulatory T cellT cellImmunologyMedizinchemical and pharmacologic phenomenaCell CommunicationBiologyT-Lymphocytes RegulatoryMiceAdenosine TriphosphateAntigens CDCell MovementmedicineImmunology and AllergyAnimalsGuanine Nucleotide Exchange FactorsDendritic cell migrationReceptors Adenosine A2Apyraserap1 GTP-Binding Proteinshemic and immune systemsDendritic CellsActin cytoskeletonAdenosineAdenosine receptorCell biologyActin Cytoskeletonmedicine.anatomical_structureRap1Signal transductionmedicine.drugSignal TransductionJournal of immunology (Baltimore, Md. : 1950)
researchProduct