Search results for "Phosphate"

showing 10 items of 1874 documents

Nitric oxide: comparative synthesis and signaling in animal and plant cells.

2001

Since its identification as an endothelium-derived relaxing factor in the 1980s, nitric oxide has become the source of intensive and exciting research in animals. Nitric oxide is now considered to be a widespread signaling molecule involved in the regulation of an impressive spectrum of mammalian cellular functions. Its diverse effects have been attributed to an ability to chemically react with dioxygen and its redox forms and with specific iron- and thiol-containing proteins. Moreover, the effects of nitric oxide are dependent on the dynamic regulation of its biosynthetic enzyme nitric oxide synthase. Recently, the role of nitric oxide in plants has received much attention. Plants not only…

0106 biological sciencesPlant ScienceNitric Oxide01 natural sciencesAconitaseRedoxNitric oxide03 medical and health scienceschemistry.chemical_compound[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyAnimals[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyCyclic GMP030304 developmental biologyAconitate HydrataseMammals0303 health sciencesAdenosine Diphosphate RibosebiologyPlantsPlant cellBiosynthetic enzymeNitric oxide synthasechemistryBiochemistrybiology.proteinSignal transductionNitric Oxide SynthaseReactive Oxygen SpeciesSalicylic AcidSalicylic acid010606 plant biology & botanySignal TransductionTrends in plant science
researchProduct

Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in M edicago trun…

2013

International audience; Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cros…

0106 biological sciencesRhizophagus irregularisNitrogenPhysiologyPlant SciencePlant Roots01 natural sciencesPhosphatesPhosphorus metabolismTranscriptome03 medical and health scienceschemistry.chemical_compoundNutrientSymbiosisGene Expression Regulation PlantStress PhysiologicalMycorrhizaeMedicago truncatulaBotanyPlant defense against herbivory[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPhosphate Transport ProteinsGlomeromycotaSymbiosisPlant Proteins030304 developmental biology2. Zero hunger0303 health sciencesbiologyTerpenesfungifood and beveragesPhosphorusPhosphatebiology.organism_classificationMedicago truncatulaErythritolchemistrySugar PhosphatesTranscriptomeSignal Transduction010606 plant biology & botanyNew Phytologist
researchProduct

Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula

2004

To construct macro- and microarray tools suitable for expression profiling in root endosymbioses of the model legume Medicago truncatula, we PCR-amplified a total of 6048 cDNA probes representing genes expressed in uninfected roots, mycorrhizal roots and young root nodules [Nucleic Acids Res. 30 (2002) 5579]. Including additional probes for either tissue-specific or constitutively expressed control genes, 5651 successfully amplified gene-specific probes were used to grid macro- and to spot microarrays designated Mt6k-RIT (M. truncatula 6k root interaction transcriptome). Subsequent to a technical validation of microarray printing, we performed two pilot expression profiling experiments usin…

0106 biological sciencesRoot nodule[SDV]Life Sciences [q-bio]Plant Roots01 natural sciencesApplied Microbiology and BiotechnologyTranscriptomeADNCGene Expression Regulation PlantGene Expression Regulation FungalMycorrhizaeMedicagoPCR-basedComputingMilieux_MISCELLANEOUSOligonucleotide Array Sequence AnalysisPlant ProteinsExpressed Sequence Tags2. Zero hunger0303 health sciencesnodulin genesroot nodule symbiosisarbuscular mycorrhizafood and beveragesEquipment DesignGeneral MedicineMedicago truncatulaArbuscular mycorrhiza[SDV] Life Sciences [q-bio]expression profilingDNA microarrayBiotechnologyBioengineeringComputational biologyBiologySensitivity and Specificity03 medical and health sciencesComplementary DNABotanySymbiosisLeghemoglobin030304 developmental biologyGene Expression ProfilingfungiReproducibility of Resultsbiology.organism_classificationEquipment Failure AnalysisGene expression profilingphosphate transportercDNA array010606 plant biology & botany
researchProduct

The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrh…

2012

We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The iden- tification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members…

0106 biological sciencesSucrose[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesSIEVE ELEMENTSchemistry.chemical_compoundGene Expression Regulation Plantsucrose transporterMycorrhizaePHLOEMROOTSPlant Proteins2. Zero hungerRegulation of gene expression0303 health sciencesPHOSPHATE TRANSPORTERbiologyfood and beveragesARABIDOPSISSUTMedicago truncatulasugar partitioning[SDE]Environmental Sciencessugar transportGlomus intraradicesEXPRESSIONTOMATO SUGAR TRANSPORTERMolecular Sequence DataGENE FAMILYPhosphates03 medical and health sciencesSymbiosisBotanyMedicago truncatula[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSSugarGlomeromycotaSymbiosisGeneMolecular Biology030304 developmental biologyfungiMembrane Transport Proteins15. Life on landbiology.organism_classificationMONOSACCHARIDE TRANSPORTERYeastCarbonchemistryHeterologous expression010606 plant biology & botanyMolecular plant
researchProduct

Free Radicals Mediate Systemic Acquired Resistance

2014

Summary: Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azel…

0106 biological sciences[SDV]Life Sciences [q-bio]ArabidopsisPseudomonas syringaeReductasemedicine.disease_cause01 natural scienceschemistry.chemical_compoundcuticle formationInducerDicarboxylic Acidsskin and connective tissue diseaseslcsh:QH301-705.5chemistry.chemical_classification0303 health sciencesMutationsalicyclic-acidCell biologydefenseGlutathione ReductaseBiochemistryGlycerophosphates[SDE]Environmental Sciencesplant immunitySystemic acquired resistances-nitrosoglutathioneSecondary infectionnitric-oxidearabidopsis-thalianaBiologyNitric OxideGeneral Biochemistry Genetics and Molecular BiologyNitric oxide03 medical and health sciencesmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyReactive oxygen speciesArabidopsis Proteinsfungicell-deathbody regionschemistrylcsh:Biology (General)azelaic-acidresponsesNitric Oxide SynthaseReactive Oxygen SpeciesFunction (biology)010606 plant biology & botanynitric-oxide;plant immunity;arabidopsis-thaliana;s-nitrosoglutathione;cuticle formation;salicyclic-acid;azelaic-acid;cell-death;responses;defenseCell Reports
researchProduct

Incidence and control of black spot syndrome of tiger nut

2017

Tiger nut (Cyperus esculentum) is a very profitable crop in Valencia, Spain, but in the last years, part of the harvested tubers presents black spots in the skin making them unmarketable. Surveys performed in two consecutive years showed that about 10% of the tubers were severely affected by the black spot syndrome whose aetiology is unknown. Disease control procedures based on selection of tubers used as seed (seed tubers) or treatment with hot-water and/or chemicals were assayed in greenhouse. These assays showed that that this syndrome had a negative impact on the germination rate, tuber size and yield. Selection of asymptomatic seed tubers reduced drastically the incidence of the black …

0106 biological sciencesbiologyfungifood and beveragesbiology.organism_classification01 natural sciencesPlant diseaseFungicideCrop010104 statistics & probabilitychemistry.chemical_compoundHorticultureCyperusAgronomyTrisodium phosphatechemistryGerminationSodium hypochlorite0101 mathematicsAgronomy and Crop Science010606 plant biology & botanyBlack spotAnnals of Applied Biology
researchProduct

In vivoanalysis of the lumenal binding protein (BiP) reveals multiple functions of its ATPase domain

2007

International audience; The endoplasmic reticulum (ER) chaperone binding protein (BiP) binds exposed hydrophobic regions of misfolded proteins. Cycles of ATP hydrolysis and nucleotide exchange on the ATPase domain were shown to regulate the function of the ligand-binding domain in vitro. Here we show that ATPase mutants of BiP with defective ATP-hydrolysis (T46G) or ATP-binding (G235D) caused permanent association with a model ligand, but also interfered with the production of secretory, but not cytosolic, proteins in vivo. Furthermore, the negative effect of BiP(T46G) on secretory protein synthesis was rescued by increased levels of wild-type BiP, whereas the G235D mutation was dominant. U…

0106 biological sciencesgenetic structuresRecombinant Fusion ProteinsATPaseBlotting WesternGreen Fluorescent ProteinsPlant ScienceBINDING PROTEINEndoplasmic ReticulumModels Biological01 natural sciencesChromatography Affinity[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesAdenosine TriphosphateTobaccoPROTEIN FOLDINGGeneticsImmunoprecipitationEndoplasmic Reticulum Chaperone BiPHSP70Heat-Shock Proteins030304 developmental biologyCHAPERONEAdenosine Triphosphatases0303 health sciencesbiologyHydrolysisProtoplastsEndoplasmic reticulumBinding proteinCell BiologyPlants Genetically ModifiedLigand (biochemistry)Secretory proteinBiochemistryChaperone (protein)MutationChaperone bindingbiology.proteinATPASEElectrophoresis Polyacrylamide GelProtein foldingMolecular ChaperonesProtein BindingSignal Transduction010606 plant biology & botanyThe Plant Journal
researchProduct

The Plant Inorganic Pyrophosphatase Does Not Transport K+ in Vacuole Membrane Vesicles Multilabeled with Fluorescent Probes for H+, K+, and Membrane …

1995

Abstract It has been claimed that the inorganic pyrophosphatase (PPase) of the plant vacuolar membrane transports K+ in addition to H+ in intact vacuoles (Davies, J. M., Poole, R. J., Rea, P. A., and Sanders, D.(1992) Proc. Natl. Acad. Sci. U. S. A. 89, 11701-11705). Since this was not confirmed using the purified and reconstituted PPase consisting of a 75-kDa polypeptide (Sato, M. H., Kasahara, M., Ishii, N., Homareda, H., Matsui, H., and Yoshida, M. (1994) J. Biol. Chem. 269, 6725-6728), these authors proposed that K+ transport by the PPase is dependent on its association with other membrane components lost during purification. We have examined the hypothesis of K+ translocation by the PP…

0106 biological sciencespyrophosphataseProtonophoreIonophoreVacuole01 natural sciencesBiochemistryPyrophosphateMembrane Potentials03 medical and health scienceschemistry.chemical_compoundValinomycinvitis viniferahydrolyseion potassiumtransport membranaire[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]PyrophosphatasesMolecular BiologyComputingMilieux_MISCELLANEOUSFluorescent Dyes030304 developmental biologyionophoreMembrane potential0303 health sciencesInorganic pyrophosphatasemembrane vacuolaireIon TransportVesicleIntracellular MembranesCell BiologyPlantsEnzyme ActivationInorganic PyrophosphataseBiochemistrychemistrypotentiel membranaireVacuolesPotassiumBiophysicsProtonsvigneHydrogen010606 plant biology & botanyJournal of Biological Chemistry
researchProduct

Comprehensive analysis of photoinitiators and primary aromatic amines in food contact materials using liquid chromatography High-Resolution Mass Spec…

2018

Abstract A comprehensive strategy for the analysis of UV-ink photoinitiators and primary aromatic amines (PAAS) in food-packaging materials such as, juice tetrabricks, pouches and bags has been developed using liquid chromatography coupled to Orbitrap High-Resolution Mass Spectrometry (LC-Orbitrap-HRMS). The methodology includes both quantitative target analysis and post-run target screening analysis. The quantitative method was validated after a previous optimisation of the single-stage Orbitrap fragmentation through the Higher-Energy Collisional Dissociation (HCD) Cell. Overall, the quantitative method presented recoveries ranging from 78% to 119%, with a precision (RSD) lower than 20%, f…

02 engineering and technologyMass spectrometryOrbitrapPrimary aromatic amines01 natural sciencesMass SpectrometryPhotoinitiatorsAnalytical Chemistrylaw.inventionchemistry.chemical_compoundFood packagingAnilinelawBenzophenoneDetection limitChromatography010401 analytical chemistryHigh-Resolution021001 nanoscience & nanotechnologyThioxanthoneOrbitrap0104 chemical scienceschemistryPerfluorooctanoic acid0210 nano-technologyTriphenyl phosphate
researchProduct

Transformation of Construction Cement to a Self-Healing Hybrid Binder

2019

A new biomimetic strategy to im prove the self-healing properties of Portland cement is presented that is based on the application of the biogenic inorganic polymer polyphosphate (polyP), which is used as a cement admixture. The data show that synthetic linear polyp, with an average chain length of 40, as well as natural long-chain polyP isolated from soil bacteria, has the ability to support self-healing of this construction material. Furthermore, polyP, used as a water-soluble Na-salt, is subject to Na+/Ca2+ exchange by the Ca2+ from the cement, resulting in the formation of a water-rich coacervate when added to the cement surface, especially to the surface of bacteria-containing cement/c…

0211 other engineering and technologies02 engineering and technologylaw.inventionlcsh:Chemistrychemistry.chemical_compoundBiomimetic MaterialsPolyphosphateslaw021105 building & constructionComposite materiallcsh:QH301-705.5SpectroscopycoacervateCoacervatesoil bacteriaGeneral Medicine021001 nanoscience & nanotechnology6. Clean waterComputer Science Applicationsmicrocapsulessurgical procedures operative0210 nano-technologyinorganic polyphosphateManufactured MaterialsPortland cementMaterials scienceArticleCatalysisInorganic Chemistryotorhinolaryngologic diseasesself-healingPhysical and Theoretical ChemistryMolecular BiologyCementSoil bacteriaInorganic polymerConstruction MaterialsSpectrum AnalysisPolyphosphateOrganic ChemistryWaterModels Theoreticaldigestive system diseasesPortland cementlcsh:Biology (General)lcsh:QD1-999chemistrySelf-healingMicroscopy Electron ScanningHardening (metallurgy)concretemicrocracksInternational Journal of Molecular Sciences
researchProduct