Search results for "Phosphofructokinase-2"

showing 2 items of 2 documents

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog skeletal muscle: purification, kinetics and immunological properties.

1993

Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DN…

PhysiologyPhosphofructokinase-2BiologyBiochemistrychemistry.chemical_compoundEndocrinologymedicineFructosediphosphatesAnimalsGlycolysisPhosphorylationEcology Evolution Behavior and Systematicschemistry.chemical_classificationMolecular massImmunochemistryMusclesPhosphotransferasesSkeletal muscleRana esculentaFructoseHydrogen-Ion ConcentrationMolecular WeightKineticsmedicine.anatomical_structureEnzymechemistryFructose 26-bisphosphateBiochemistryGRENOUILLEAnimal Science and ZoologyPhosphoenolpyruvate carboxykinaseProtein KinasesJournal of comparative physiology. B, Biochemical, systemic, and environmental physiology
researchProduct

The HIF1α-PFKFB3 Pathway: A Key Player in Diabetic Retinopathy

2021

Abstract Diabetic retinopathy (DR) is the leading cause of blindness for adults in developed countries. Both microvasculopathy and neurodegeneration are implicated in mechanisms of DR development, with neuronal impairment preceding microvascular abnormalities, which is often underappreciated in the clinic. Most current therapeutic strategies, including anti-vascular endothelial growth factor (anti-VEGF)-antibodies, aim at treating the advanced stages (diabetic macular edema and proliferative diabetic retinopathy) and fail to target the neuronal deterioration. Hence, new therapeutic approach(es) intended to address both vascular and neuronal impairment are urgently needed. The hypoxia-induci…

medicine.medical_specialtyPhosphofructokinase-2Endocrinology Diabetes and MetabolismClinical BiochemistryMitochondrionmedicine.disease_causeBiochemistryangiogenesisEndocrinologyPFKFB3Internal medicineDiabetes MellitusmedicineHumansHIF1αbusiness.industryBiochemistry (medical)neurodegenerationDiabetic retinopathyMini-Reviewmedicine.diseasediabetic retinopathyEndocrinologyKey (cryptography)businessAcademicSubjects/MED00250Oxidative stressSignal TransductionThe Journal of Clinical Endocrinology & Metabolism
researchProduct