Search results for "Phosphorescence"

showing 10 items of 101 documents

Photophysical and electroluminescence properties of bis(2′,6′-difluoro-2,3′-bipyridinato-N,C4′)iridium(picolinate) complexes: effect of electron-with…

2015

Herein, we have synthesized a series of 2′,6′-difluoro-2,3′-bipyridine cyclometalating ligands by substituting electron-withdrawing (–CHO, –CF3, and –CN) and electron-donating (–OMe and –NMe2) groups at the 4′ position of the pyridyl moiety and utilized them for the construction of five new iridium(III) complexes (Ir1–Ir5) in the presence of picolinate as an ancillary ligand. The photophysical properties of the developed iridium(III) compounds were investigated with a view to understand the substituent effects. The strong electron-withdrawing (–CN) group containing the iridium(III) compound (Ir3) exhibits highly efficient genuine green phosphorescence (λmax = 508 nm) at room temperature in …

Materials scienceSubstituentchemistry.chemical_elementGeneral ChemistryPhotochemistrychemistry.chemical_compoundchemistryExcited stateMaterials ChemistryOLEDMoietyQuantum efficiencyDensity functional theoryIridiumPhosphorescenceJournal of Materials Chemistry C
researchProduct

Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs)

2008

A novel solution processable phosphorescent dendrimer based on cyclic phosphazene (CP) cores has been prepared and used as emissive layers in simple OLED architectures, providing efficiencies of 24.0 cd A^-1 and 16.7 lm W^-1. Bolink, Henk, Henk.Bolink@uv.es ; Garcia Santamaria, Sonsoles Amor, Sonsoles.Garcia@uv.es

Materials scienceUNESCO::QUÍMICA:QUÍMICA [UNESCO]Catalysislaw.inventionchemistry.chemical_compoundlawDendrimerMaterials ChemistryOLEDPhosphorescence ; Organic light ; Dendrimer ; OLEDPhosphazeneDendrimerPhosphorescencebusiness.industryUNESCO::QUÍMICA::Química analíticaMetals and AlloysGeneral ChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOLEDOrganic lightchemistry:QUÍMICA::Química analítica [UNESCO]Ceramics and CompositesOptoelectronicsPhosphorescent organic light-emitting diodebusinessPhosphorescenceChem. Commun.
researchProduct

Energy structure and electro-optical properties of organic layers with carbazole derivative

2014

Abstract Phosphorescent organic light emitting diodes are perspective in lighting technologies due to high efficient electroluminescence. Not only phosphorescent dyes but also host materials are important aspect to be considered in the devices where they are a problem for blue light emitting phosphorescent molecules. Carbazole derivative 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole (TCz1) is a good candidate and has shown excellent results in thermally evaporated films. This paper presents the studies of electrical properties and energy structure in thin films of spin-coated TCz1 and thermally evaporated tris[2-(2,4-difluorophenyl)pyridine]iridium(III) (Ir(Fppy)3). The 0.46 eV difference …

Materials sciencebusiness.industryBand gapCarbazolePhotoconductivityMetals and AlloysSurfaces and InterfacesElectroluminescenceSpace chargeSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryMaterials ChemistryOLEDOptoelectronicsCharge carrierbusinessPhosphorescenceThin Solid Films
researchProduct

Tenfold increase in efficiency from a reference blue OLED

2018

Abstract Starting from a reference single-layer light-emitting diode based on the blue phosphorescent bis-cyclometallated iridium complex FIrpic as guest, hosted in a PVK (non-conjugated poly(vynilcarbazole)) matrix, different strategies are followed to improve the efficiency of the devices through the combination of solution processed and evaporated layers. Injection of charges from the electrodes has been varied by using different conductive PEDOT: PSS as hole injection layer and a nanoscale Cs2CO3 interlayer as electron injection and hole-blocking film. Furthermore, a separated electron injection/hole blocking evaporated layer, TPBi or 3TPYMB, is introduced in double-layer devices to enh…

Materials sciencebusiness.industryBiophysicschemistry.chemical_element02 engineering and technologyGeneral ChemistryElectron010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesBiochemistryAtomic and Molecular Physics and Optics0104 chemical scienceschemistryPEDOT:PSSElectrodeOLEDOptoelectronicsIridium0210 nano-technologyPhosphorescencebusinessLayer (electronics)DiodeJournal of Luminescence
researchProduct

Solution processed organic light-emitting diodes using a triazatruxene crosslinkable hole transporting material.

2018

A cross-linkable triazatruxene that leads to insoluble films upon thermal annealing at temperatures compatible with flexible substrates is presented. The films were used as the hole transporting and electron blocking layer in partially solution processed phosphorescent organic light-emitting diodes, reaching power conversion efficiencies of 24 lm W−1, an almost 50% improvement compared to the same OLEDs without the cross-linkable hole transporting layer.

Materials sciencebusiness.industryGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesElectron blocking layerTriazatruxene0104 chemical sciencesSolution processedOLEDOptoelectronics0210 nano-technologyPhosphorescencebusinessLayer (electronics)DiodeRSC advances
researchProduct

Correlating the Lifetime and Fluorine Content of Iridium(III) Emitters in Green Light-Emitting Electrochemical Cells

2013

In light-emitting electrochemical cells, the lifetime of the device is intrinsically linked to the stability of the phosphorescent emitter. In this study, we present a series of ionic iridium(III) emitters based on cyclometalating phenylpyridine ligands whose fluorine substituents are varied in terms of position and number. Importantly, despite these structural modifications, the emitters exhibit virtually identical electrochemical and spectroscopic properties, which allows for proper comparison in functional devices. Quantum chemical calculations support the properties measured in solution and suggest great similarities regarding the electronic structures of the emitters. In electrolumines…

Materials sciencebusiness.industryGeneral Chemical EngineeringIonic bondingchemistry.chemical_elementGeneral ChemistrystabilityElectroluminescenceGreen-lightiridium emittersElectrochemical cellchemistryMaterials ChemistryFluorinePhysics::Accelerator PhysicsOptoelectronicsIridiumbusinessPhosphorescenceelectroluminescent devicesCommon emitterChemistry of Materials
researchProduct

Controlling the dynamic behavior of light emitting electrochemical cells

2013

Abstract Light emitting electrochemical cells (LECs) present an attractive route towards cost efficient lighting applications. By utilizing ionic phosphorescent transition metal complexes, efficient electroluminescence can be realized from a single layer device using air stable electrodes. These devices achieve efficient charge carrier injection due to ion accumulation at the interface upon driving, resulting in a dynamic response upon device operation. Here we investigate the device operation by using fast current and luminance versus voltage sweeps during normal fixed bias operating. A universal set of JL–V curves can be identified in which different regimes are observable. The speed and …

Materials sciencebusiness.industryGeneral ChemistryElectroluminescenceCondensed Matter PhysicsLuminanceSpace chargeElectronic Optical and Magnetic MaterialsIonElectrochemical cellBiomaterialsElectrodeMaterials ChemistryOptoelectronicsElectrical and Electronic EngineeringbusinessPhosphorescenceVoltageOrganic Electronics
researchProduct

Novel method of phosphorescent strontium aluminate coating preparation on aluminum

2018

This work was supported by the ERDF , European-Union Project No. 1.1.1.1/16/A/182 .

Materials sciencechemistry.chemical_element02 engineering and technologyengineering.material010402 general chemistry7. Clean energy01 natural scienceschemistry.chemical_compoundCoatingAluminium:NATURAL SCIENCES:Physics [Research Subject Categories]lcsh:TA401-492General Materials SciencePersistent luminophoreStrontium aluminateStrontiumLong afterglowMechanical EngineeringStrontium aluminatePlasma electrolytic oxidation021001 nanoscience & nanotechnology0104 chemical sciencesElectrolytic oxidationChemical engineeringchemistryMechanics of Materialsengineeringlcsh:Materials of engineering and construction. Mechanics of materialsPhosphorescent coating0210 nano-technologyPhosphorescenceLuminescencePowder diffractionMaterials & Design
researchProduct

Photophysical properties of a rhodium tetraphenylporphyrin-tin corrole dyad. The first example of a through metal-metal bond energy transfer

2005

The luminescence spectroscopy study and the determination of the photophysical parameters for the M-M'-bonded rhodium meso-tetraphenylporphyrin-tin(2,3,7,13,17,18-hexamethyl-8,12-diethylcorrole) complex, (TPP)Rh-Sn(Me6Et2Cor) 1, was investigated. The emission bands as well as the lifetimes (tau(e)) and the quantum yields (Phi(e); at 77 K using 2MeTHF as solvent) were compared with those of (TPP)RhI 2 (TPP = tetraphenylporphyrin) and (Me6Et2Cor)SnCl 3 (Me6Et2Cor = 2,3,7,13,17,18-hexamethyl-8,12-diethylcorrole) which are the two chemical precursors of 1. The energy diagram has been established from the absorption, fluorescence and phosphorescence spectra. The Rh(TPP) and Sn(Me6Et2Cor) chromop…

MetalloporphyrinsPhotochemistrychemistry.chemical_element010402 general chemistryPhotochemistry7. Clean energy01 natural sciencesBiochemistryRhodiumchemistry.chemical_compoundrhodium porphyrinTetraphenylporphyrinRhodium[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryBond energyCorrole010405 organic chemistry[ CHIM.COOR ] Chemical Sciences/Coordination chemistryGeneral MedicineAcceptor3. Good health0104 chemical sciencesEnergy TransferchemistryMetalsSpectrophotometryExcited statemetal-metal bond energy transferTinPhosphorescencetin corrole
researchProduct

Luminescent alkynyl-gold(i) coumarin derivatives and their biological activity

2013

The synthesis and characterization of three propynyloxycoumarins are reported in this work together with the formation of three different series of gold(i) organometallic complexes. Neutral complexes are constituted by water soluble phosphines (PTA and DAPTA) which confer water solubility to them. The X-ray crystal structure of 7-(prop-2-in-1-yloxy)-1-benzopyran-2-one and its corresponding dialkynyl complex is also shown and the formation of rectangular dimers for the gold derivative in the solid state can be observed. A detailed analysis of the absorption and emission spectra of both ligands and complexes allows us to attribute the luminescent behaviour to the coumarin organic ligand. More…

Models MolecularLuminescenceThioredoxin-Disulfide ReductasePhosphinesAntineoplastic AgentsCrystal structureCrystallography X-RayPhotochemistryInorganic ChemistryMetalchemistry.chemical_compoundCoumarinsCell Line TumorNeoplasmsPolymer chemistryHumansPropynyloxycoumarins; Gold(I) complexes; X-ray crystallography; Luminiscence; Biological activityta116Aqueous solutionLigandWaterBiological activityCoumarinSolubilitychemistryvisual_artvisual_art.visual_art_mediumDrug Screening Assays AntitumorLuminescencePhosphorescenceOrganogold CompoundsDalton Trans.
researchProduct