Search results for "Phosphorylation"

showing 10 items of 975 documents

Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease

2016

International audience; Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinsons disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we …

0301 basic medicineProteomerab3 GTP-Binding Proteinsalpha-synucleindomainSyntaxin 1Interactomedopaminergic-neuronsAnimals Genetically Modifiedchemistry.chemical_compound0302 clinical medicinemicrotubule stabilityDrosophila ProteinsProtein Interaction MapsGenetics (clinical)LRRK2 GeneKinasephosphorylationBrainParkinson DiseaseArticlesGeneral Medicineautosomal-dominant parkinsonismLRRK2Drosophila melanogasterSynaptotagmin IProteomePhosphorylationSynaptic VesiclesNerve Tissue ProteinsBiologyLeucine-Rich Repeat Serine-Threonine Protein Kinase-203 medical and health sciencesGeneticsAnimalsHumansKinase activitygeneMolecular BiologyAlpha-synucleingtp-bindingDopaminergic Neuronsrepeat kinase 2Molecular biologyPhosphoric Monoester Hydrolasesnervous system diseasesDisease Models Animal030104 developmental biologyGene Expression Regulationchemistrymutation030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

TCR signalling network organization at the immunological synapses of murine regulatory T cells.

2017

Regulatory T (Treg) cells require T-cell receptor (TCR) signalling to exert their immunosuppressive activity, but the precise organization of the TCR signalling network compared to conventional T (Tconv) cells remains elusive. By using accurate mass spectrometry and multi-epitope ligand cartography (MELC) we characterized TCR signalling and recruitment of TCR signalling components to the immunological synapse (IS) in Treg cells and Tconv cells. With the exception of Themis which we detected in lower amounts in Treg cells, other major TCR signalling components were found equally abundant, however, their phosphorylation-status notably discriminates Treg cells from Tconv cells. Overall, this s…

0301 basic medicineProteomicsImmunological SynapsesProteomeCD3ImmunologyReceptors Antigen T-Cellchemical and pharmacologic phenomenaBiologyT-Lymphocytes RegulatoryArticleImmunological synapse03 medical and health sciencesT-Lymphocyte SubsetsImmunology and AllergyAnimalsPhosphorylationReceptorCells CulturedCD86Mice Inbred BALB CZAP-70 Protein-Tyrosine KinaseZAP70T-cell receptorCD28hemic and immune systemsImmunological SynapsesCell biology030104 developmental biologyMicroscopy Fluorescencebiology.proteinFemaleSignal TransductionEuropean journal of immunology
researchProduct

Phosphoproteomics of the developing heart identifies PERM1 - An outer mitochondrial membrane protein.

2021

Heart development relies on PTMs that control cardiomyocyte proliferation, differentiation and cardiac morphogenesis. We generated a map of phosphorylation sites during the early stages of cardiac postnatal development in mice; we quantified over 10,000 phosphorylation sites and 5000 proteins that were assigned to different pathways. Analysis of mitochondrial proteins led to the identification of PGC-1- and ERR-induced regulator in muscle 1 (PERM1), which is specifically expressed in skeletal muscle and heart tissue and associates with the outer mitochondrial membrane. We demonstrate PERM1 is subject to rapid changes mediated by the UPS through phosphorylation of its PEST motif by casein ki…

0301 basic medicineProteomicsOrganogenesisMFN2Muscle ProteinsP70-S6 Kinase 1030204 cardiovascular system & hematologyMitochondrionMitochondria Heart03 medical and health sciencesMice0302 clinical medicineCa2+/calmodulin-dependent protein kinaseAnimalsMolecular BiologyMitochondrial transportMice KnockoutChemistryMyocardiumPhosphoproteomicsMembrane ProteinsHeartLipid MetabolismPhosphoproteinsSolute carrier familyCell biology030104 developmental biologyMitochondrial MembranesPhosphorylationCardiology and Cardiovascular MedicineJournal of molecular and cellular cardiology
researchProduct

The actin remodeling protein cofilin is crucial for thymic αβ but not γδ T-cell development

2018

Cofilin is an essential actin remodeling protein promoting depolymerization and severing of actin filaments. To address the relevance of cofilin for the development and function of T cells in vivo, we generated knock-in mice in which T-cell–specific nonfunctional (nf) cofilin was expressed instead of wild-type (WT) cofilin. Nf cofilin mice lacked peripheral αβ T cells and showed a severe thymus atrophy. This was caused by an early developmental arrest of thymocytes at the double negative (DN) stage. Importantly, even though DN thymocytes expressed the TCRβ chain intracellularly, they completely lacked TCRβ surface expression. In contrast, nf cofilin mice possessed normal numbers of γδ T cel…

0301 basic medicineReceptors Antigen T-Cell alpha-betaT-LymphocytesJurkat cellsenvironment and public healthImmune ReceptorsBiochemistryWhite Blood CellsJurkat CellsMice0302 clinical medicineContractile ProteinsSpectrum Analysis TechniquesShort ReportsAnimal CellsCell MovementT-Lymphocyte SubsetsMedicine and Health SciencesGene Knock-In TechniquesBiology (General)Post-Translational ModificationPhosphorylationThymocytesImmune System ProteinsT CellsGeneral NeuroscienceStem CellsReceptors Antigen T-Cell gamma-deltaTransfectionAnimal ModelsCofilinFlow CytometryCell biologyThymusmedicine.anatomical_structureExperimental Organism SystemsActin Depolymerizing FactorsSpectrophotometry030220 oncology & carcinogenesisPhosphorylationCytophotometryCellular TypesGeneral Agricultural and Biological SciencesSignal TransductionHematopoietic Progenitor CellsProlineQH301-705.5T cellImmune CellsImmunologyDouble negativeMouse Modelsmacromolecular substancesThymus GlandBiologyResearch and Analysis MethodsGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesModel OrganismsmedicineAnimalsHumansActinBlood CellsGeneral Immunology and MicrobiologyActin remodelingBiology and Life SciencesProteinsCell BiologyActinsT Cell ReceptorsCytoskeletal Proteins030104 developmental biologyImmune SystemMutationPLoS Biology
researchProduct

Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia—Relevance for Mental Diseases

2021

The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor–receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biologica…

0301 basic medicineReviewheteroreceptor complexesTropomyosin receptor kinase BReceptor tyrosine kinasechemistry.chemical_compound0302 clinical medicineG protein-coupled receptorsserotonin receptorsReceptor Serotonin 5-HT2ABiology (General)astrogliabiologyChemistryMental DisordersBrainGeneral MedicineAntidepressive AgentsdepressionG protein-coupled receptors; astroglia; depression; heteroreceptor complexes; rapid antidepressant drugs; receptor tyrosine kinase; serotonin receptors.medicine.symptomAntipsychotic AgentsSerotonergic NeuronsSignal TransductionProto-oncogene tyrosine-protein kinase Srcserotonin receptorheteroreceptor complexeQH301-705.5Astroglia; Depression; G protein-coupled receptors; Heteroreceptor complexes; Rapid antidepressant drugs; Receptor tyrosine kinase; Serotonin receptors;Allosteric regulationserotonin receptors heteroreceptor complexes depression astroglia receptor tyrosine kinase rapid antidepressant drugs G protein-coupled receptors.depression astroglia receptor tyrosine kinase rapid antidepressant drugs G protein-coupled receptorsHeteroreceptorNO03 medical and health sciencesmedicineAnimalsHumansReceptor Fibroblast Growth Factor Type 1rapid antidepressant drugsG protein-coupled receptorReceptors Dopamine D2Dopaminergic NeuronsTyrosine phosphorylationReceptor Cross-TalkReceptor Galanin Type 1Receptor Galanin Type 2030104 developmental biologyMechanism of actionAstrocytesreceptor tyrosine kinasebiology.proteinReceptors Serotonin 5-HT1Neuroscience030217 neurology & neurosurgeryCells
researchProduct

Oxidative modification impairs SERCA activity in Drosophila and human cell models of Parkinson's disease

2021

DJ-1 is a causative gene for familial Parkinson's disease (PD) with different functions, standing out its role against oxidative stress (OS). Accordingly, PD model flies harboring a mutation in the DJ-1β gene (the Drosophila ortholog of human DJ-1) show high levels of OS markers like protein carbonylation, a common post-translational modification that may alter protein function. To increase our understanding of PD pathogenesis as well as to discover potential therapeutic targets for pharmacological intervention, we performed a redox proteomic assay in DJ-1β mutant flies. Among the proteins that showed increased carbonylation levels in PD model flies, we found SERCA, an endoplasmic reticulum…

0301 basic medicineSERCAProteomeProtein CarbonylationProtein Deglycase DJ-1MutantOxidative phosphorylationmedicine.disease_causeSarcoplasmic Reticulum Calcium-Transporting ATPasesAnimals Genetically ModifiedProtein CarbonylationNeuroblastoma03 medical and health sciences0302 clinical medicinemedicineAnimalsDrosophila ProteinsHumansMolecular BiologyMutationActivator (genetics)ChemistryEndoplasmic reticulumfungiParkinson DiseaseCell biologyDisease Models AnimalOxidative StressDrosophila melanogasterPhenotype030104 developmental biologyMutationMolecular MedicineCalciumOxidation-Reduction030217 neurology & neurosurgeryOxidative stressBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
researchProduct

Nutritional control of IL-23/Th17-mediated autoimmune disease through HO-1/STAT3 activation

2017

AbstractThe nutritional curcumin (CUR) is beneficial in cell-mediated autoimmune diseases. The molecular mechanisms underlying this food-mediated silencing of inflammatory immune responses are poorly understood. By investigating antigen-specific immune responses we found that dietary CUR impairs the differentiation of Th1/Th17 cells in vivo during encephalomyelitis and instead promoted Th2 cells. In contrast, feeding CUR had no inhibitory effect on ovalbumin-induced airway inflammation. Mechanistically, we found that CUR induces an anti-inflammatory phenotype in dendritic cells (DC) with enhanced STAT3 phosphorylation and suppressed expression of Il12b and Il23a. On the molecular level CUR …

0301 basic medicineSTAT3 Transcription FactorCurcuminEncephalomyelitis Autoimmune ExperimentalOvalbuminEncephalomyelitisInterleukin-23ArticleAutoimmune Diseases03 medical and health sciencesMiceImmune systemTh2 CellsmedicineInterleukin 23Gene silencingAnimalsPhosphorylationSTAT3Autoimmune diseaseInflammationImmunity CellularMultidisciplinarybiologyChemistryMembrane ProteinsDendritic Cellsmedicine.diseaseCell biologyHeme oxygenase030104 developmental biologybiology.proteinPhosphorylationTh17 CellsHeme Oxygenase-1Scientific Reports
researchProduct

Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants

2017

In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. Howev…

0301 basic medicineSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeeIF2αSaccharomyces cerevisiaeProtein Serine-Threonine KinasesBiology03 medical and health sciencesPolysomeEukaryotic initiation factormedicineProtein biosynthesisLow temperatureEukaryotic Initiation FactorsPhosphorylationProtein kinase AMolecular BiologyTryptophanTranslation (biology)Cell Biologybiology.organism_classificationAdaptation PhysiologicalYeastHog1Cold TemperatureBasic-Leucine Zipper Transcription Factors030104 developmental biologyBiochemistryProtein BiosynthesisPolysomesSnf1Cold sensitivityPhosphorylationMitogen-Activated Protein Kinasesmedicine.symptomEnergy MetabolismGcn2 pathwayTranscription FactorsBiochimica et Biophysica Acta (BBA) - Molecular Cell Research
researchProduct

Interaction between ROR1 and MuSK activation complex in myogenic cells

2017

The ROR family of receptor tyrosine kinases, ROR1 and ROR2, is known to play an important role during skeletal muscle regeneration. ROR1 has a critical role in regulating satellite cell (SC) proliferation during muscle regeneration, and proinflammatory cytokines such as TNF-α and IL-1β can induce expression of ROR1 in myogenic cells via NF-κB activation. While searching for ROR1-interacting proteins in myogenic cells, we identified MuSK as a ROR1-binding protein. MuSK interacts with and phosphorylates ROR1 at the cytoplasmic proline-rich domain. ROR1 also interacts with the MuSK activator Dok-7 independently of MuSK interaction. Collectively, our results identified ROR1 as a new interacting…

0301 basic medicineSatellite Cells Skeletal MuscleBiophysicsMuscle ProteinsReceptor Tyrosine Kinase-like Orphan ReceptorsBiochemistryReceptor tyrosine kinaseCell LineProinflammatory cytokineMice03 medical and health sciencesProtein DomainsStructural BiologyChlorocebus aethiopsGeneticsAnimalsHumansReceptors CholinergicProtein phosphorylationPhosphorylationMolecular BiologyCell ProliferationBinding SitesbiologyKinaseChemistryActivator (genetics)Receptor Protein-Tyrosine KinasesCell DifferentiationROR2Cell BiologyCell biologyHEK293 Cells030104 developmental biologyCOS CellsROR1biology.proteinPhosphorylationProtein BindingFEBS Letters
researchProduct

Extracellular vesicles and redox modulation in aging

2019

Extracellular vesicles (EVs) are nowadays known to be mediators of cell-to-cell communication involved in physiological and pathological processes. The current expectation is their use as specific biomarkers and therapeutic tools due to their inner characteristics. However, several investigations still need to be done before we can use them in the clinic. First, their categorization is still under debate, although an accurate classification of EVs subtypes should be based on physical characteristics, biochemical composition or condition description of the cell of origin. Second, EVs carry lipids, proteins and nucleic acids that can induce epigenetic modifications on target cells. These carg…

0301 basic medicineSenescenceRedox modulationCell CommunicationOxidative phosphorylationBiologymedicine.disease_causeBiochemistryExtracellular vesiclesRedox statusCell biologyExtracellular Vesicles03 medical and health sciences030104 developmental biology0302 clinical medicinePhysiology (medical)medicineProspective StudiesEpigeneticsOxidation-Reduction030217 neurology & neurosurgeryBiogenesisOxidative stressFree Radical Biology and Medicine
researchProduct