Search results for "Phosphorylation"

showing 10 items of 975 documents

Multiple steady states and the form of response functions to antigen in a model for the initiation of T cell activation

2017

The aim of this paper is to study the qualitative behaviour predicted by a mathematical model for the initial stage of T-cell activation. The state variables in the model are the concentrations of phosphorylation states of the T-cell receptor (TCR) complex and the phosphatase SHP-1 in the cell. It is shown that these quantities cannot approach zero and that the model possesses more than one positive steady state for certain values of the parameters. It can also exhibit damped oscillations. It is proved that the chemical concentration which represents the degree of activation of the cell, that of the maximally phosphorylated form of the TCR complex, is, in general, a non-monotone function of…

0301 basic medicineState variable1004T cellMolecular Networks (q-bio.MN)PhosphatasemultistationarityDynamical Systems (math.DS)24Dissociation (chemistry)immunology03 medical and health sciences119medicineFOS: Mathematics1008Quantitative Biology - Molecular NetworksMathematics - Dynamical Systemslcsh:ScienceReceptort cellsMultidisciplinaryChemistryT-cell receptor92C37Dissociation constant030104 developmental biologymedicine.anatomical_structureFOS: Biological sciencesBiophysicsPhosphorylationlcsh:QMathematicsResearch Article
researchProduct

Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor

2016

Abstract Chronic myelogenous leukaemia (CML) is a clonal myeloproliferative disorder. Recent evidence indicates that altered crosstalk between CML and mesenchymal stromal cells may affect leukaemia survival; moreover, vesicles released by both tumour and non‐tumour cells into the microenvironment provide a suitable niche for cancer cell growth and survival. We previously demonstrated that leukaemic and stromal cells establish an exosome‐mediated bidirectional crosstalk leading to the production of IL8 in stromal cells, thus sustaining the survival of CML cells. Human cell lines used are LAMA84 (CML cells), HS5 (stromal cells) and bone marrow primary stromal cells; gene expression and protei…

0301 basic medicineStromal cellchronic myeloid leukaemiaEGFRBone Marrow CellsexosomesBiologyInterleukin 8AmphiregulinBone Marrow Stromal Cell03 medical and health sciencesAmphiregulinSettore BIO/13 - Biologia Applicatahemic and lymphatic diseasesCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositivemedicineCell AdhesionHumansInterleukin 8Epidermal growth factor receptorRNA MessengerPhosphorylationRNA Small InterferingAnnexin A2SNAILMesenchymal stem cellInterleukin-8Cell BiologyOriginal ArticlesMicrovesiclesCell biologyErbB Receptors030104 developmental biologymedicine.anatomical_structureCellular MicroenvironmentMatrix Metalloproteinase 9Cancer cellChronic Myelogenous Leukemia Exosomes; Interleukin 8; Bone Marrow Stromal Cells; EGFRbiology.proteinMolecular MedicineOriginal ArticleBone marrowSnail Family Transcription FactorsChronic Myelogenous Leukemia ExosomeStromal Cellsepidermal growth factor receptor
researchProduct

Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression.

2017

Toll-like receptors (TLRs) and nucleotide-binding oligomerisation domain (NOD)-like receptors (NLRs) are two major forms of innate immune sensors but their role in the immunopathology of stable chronic obstructive pulmonary disease (COPD) is incompletely studied. Our objective here was to investigate TLR and NLR signalling pathways in the bronchial mucosa in stable COPD.Using immunohistochemistry, the expression levels of TLR2, TLR4, TLR9, NOD1, NOD2, CD14, myeloid differentiation primary response gene 88 (MyD88), Toll-interleukin-1 receptor domain-containing adaptor protein (TIRAP), and the interleukin-1 receptor-associated kinases phospho-IRAK1 and IRAK4 were measured in the bronchial muc…

0301 basic medicineTIRAPMaleRespiratory SystemVital CapacityHAEMOPHILUS-INFLUENZAELUNG MICROBIOMEPathogenesisPulmonary Disease Chronic Obstructive0302 clinical medicineNOD2ImmunopathologyForced Expiratory VolumeNod1 Signaling Adaptor ProteinNOD1PhosphorylationCOPDSmoking11 Medical And Health SciencesMiddle AgedCPG-DNAbronchial inflammationAnti-Bacterial AgentsStreptococcus pneumoniaePseudomonas aeruginosaMOUSE LUNGFemaleLife Sciences & BiomedicineMoraxella catarrhalisSignal TransductionEXPRESSIONPulmonary and Respiratory MedicineCD14BronchiRespiratory MucosaReal-Time Polymerase Chain ReactionOBSTRUCTIVE PULMONARY-DISEASETLRs NLR bronchial inflammationNLRDENDRITIC CELL SUBSETS03 medical and health sciencesProtein DomainsmedicineHumansTLRsAgedTOLL-LIKE RECEPTORSCOPD TLR4InflammationScience & TechnologyBacteriabusiness.industrymedicine.diseaseHaemophilus influenzaeBacterial Loadrespiratory tract diseasesToll-Like Receptor 4TLR2030104 developmental biology030228 respiratory systemImmunologyINNATE IMMUNITYT-CELLSbusinessThe European respiratory journal
researchProduct

Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

2016

Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others…

0301 basic medicineThreonineHeredityMethyl-CpG-Binding Protein 2Genetic LinkageMutantFluorescent Antibody TechniqueSocial Scienceslcsh:MedicinePC12 CellsBiochemistryEpitopeImmunoenzyme TechniquesCell FusionNeuroblastomaFluorescence MicroscopyAnimal CellsMedicine and Health SciencesPsychologyPost-Translational ModificationPhosphorylationAmino Acidslcsh:ScienceCells CulturedCross ReactivityNeuronsStainingMicroscopyMultidisciplinaryReverse Transcriptase Polymerase Chain ReactionOrganic CompoundsCell StainingLight MicroscopyTransfectionChemistryX-Linked TraitsSex LinkagePhysical SciencesCellular TypesResearch ArticleCell signalingCell Physiologycongenital hereditary and neonatal diseases and abnormalitiesBlotting WesternImmunologyRett syndromeBiologyReal-Time Polymerase Chain ReactionResearch and Analysis MethodsMECP203 medical and health sciencesNeurologiaAntigenHydroxyl Amino Acidsmental disordersmedicineRett SyndromeGeneticsAnimalsHumansRNA MessengerClinical GeneticsHEK 293 cellsOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesProteinsCell Biologymedicine.diseaseMolecular biologyRatsnervous system diseases030104 developmental biologyHEK293 CellsSpecimen Preparation and TreatmentCellular NeuroscienceMutationDevelopmental PsychologyMalaltieslcsh:QNeuroscience
researchProduct

Kinetic studies on the oxidative stabilization effect of red onion skins anthocyanins extract on parsley ( Petroselinum crispum ) seed oil

2018

Abstract Cold pressed parsley seed oil gained special interest for the development of new functional foods. Similar to other edible oils it needs protection against oxidation. The present study evaluated the protective effects of anthocyanins extracted from outer skins of red onion on parsley seed oil. The natural extract-oil samples and control have been subjected to storage at 45 °C for 10 days. The results of thermal analysis by DSC showed an optimal concentration of anthocyanins of 3 mL/100 g oil. Kinetic studies using the Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose methods were performed on the sample optimally prepared. The results regarding the activation energy indicated improved …

0301 basic medicineTime FactorsPetroselinum crispumOxidative phosphorylationPeroxideAnalytical ChemistryAnthocyanins03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologyOnionsOils VolatileFood sciencePeroxide value030109 nutrition & dieteticsCalorimetry Differential ScanningPlant ExtractsChemistryfungiTemperaturefood and beverages04 agricultural and veterinary sciencesGeneral Medicine040401 food scienceKineticsOxidative StressSeedsPetroselinumOxidation-ReductionFood ScienceFood Chemistry
researchProduct

Structural Analysis of Phosphoserine Aminotransferase (Isoform 1) From Arabidopsis thaliana– the Enzyme Involved in the Phosphorylated Pathway of Ser…

2018

Phosphoserine aminotransferase (PSAT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the conversion of 3-phosphohydroxypyruvate (3-PHP) to 3-phosphoserine (PSer) in an L-glutamate (Glu)-linked reversible transamination reaction. This process proceeds through a bimolecular ping-pong mechanism and in plants takes place in plastids. It is a part of the phosphorylated pathway of serine biosynthesis, one of three routes recognized in plant organisms that yield serine. In this three-step biotransformation, 3-phosphoglycerate (3-PGA) delivered from plastidial glycolysis and Calvin cycle is oxidized by 3-PGA dehydrogenase. Then, 3-PHP is subjected to transamination with Glu to yi…

0301 basic medicineTransaminationpyridoxal 5′-phosphategeminal diaminePSATPlant Sciencelcsh:Plant cultureCofactorPLPSerine03 medical and health scienceschemistry.chemical_compoundBiosynthesisTransferaselcsh:SB1-1110Phosphoserine AminotransferaseOriginal Researchchemistry.chemical_classificationtransaminasebiologyserine metabolismPhosphoserine phosphatase030104 developmental biologychemistryBiochemistrybiology.proteinPhosphorylationFrontiers in Plant Science
researchProduct

Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress

2016

Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, …

0301 basic medicineX-Box Binding Protein 1Activin Receptors Type IIEukaryotic Initiation Factor-2MyostatinUPRBiochemistryMiceeIF-2 KinaseThioredoxinsSirtuin 1ENDOPLASMIC-RETICULUM STRESSDISULFIDE-ISOMERASEPhosphorylationta315Endoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsIN-VIVOta3141Activin receptorMOUSE MODELER STRESSEndoplasmic Reticulum Stress3. Good healthmedicine.anatomical_structuremyostatinPRESERVES MUSCLE FUNCTIONER-stressSKELETAL-MUSCLEmdxSignal TransductionEXPRESSIONmedicine.medical_specialtyXBP1MDX MICEBiologyProtein Serine-Threonine Kinases03 medical and health sciencesPhysiology (medical)Internal medicineHeat shock proteinPhysical Conditioning AnimalEndoribonucleasesmedicineAnimalsHumansRNA MessengerMuscle SkeletalSkeletal muscleMyostatinGENEActivating Transcription Factor 6Immunoglobulin Fc FragmentsMuscular Dystrophy DuchenneDisease Models Animal030104 developmental biologyProteostasisEndocrinologyGene Expression RegulationUnfolded protein responsebiology.proteinMice Inbred mdxProteostasisUnfolded Protein Response3111 BiomedicineCarrier ProteinsACVR2B
researchProduct

Effects of Pimozide Derivatives on pSTAT5 in K562 Cells

2017

STAT5 is a transcription factor, a member of the STAT family of signaling proteins. STAT5 is involved in many types of cancer, including chronic myelogenous leukemia (CML), in which this protein is found constitutively activated as a consequence of BCR-ABL expression. The neuroleptic drug pimozide was recently reported to act as an inhibitor of STAT5 phosphorylation and is capable of inducing apoptosis in CML cells in vitro. Our research group has synthesized simple derivatives of pimozide with cytotoxic activity and that are able to decrease the levels of phosphorylated STAT5. In this work we continued the search for novel STAT5 inhibitors, synthesizing compounds in which the benzoimidazol…

0301 basic medicineantiproliferationApoptosisPharmacologyBiochemistryAntineoplastic Agent0302 clinical medicinePimozidehemic and lymphatic diseasesDrug DiscoverySTAT5 Transcription FactorCytotoxic T cellPhosphorylationGeneral Pharmacology Toxicology and PharmaceuticsBCR-ABL-expressing leukemia; STAT5 inhibitors; antiproliferation; apoptosis; pimozideSTAT5Molecular StructurebiologyPimozidefood and beverages030220 oncology & carcinogenesisMolecular MedicinePhosphorylationHumanmedicine.drugAntineoplastic AgentsNOStructure-Activity Relationship03 medical and health sciencesK562 CellmedicineHumansTranscription factorCell ProliferationPharmacologyDose-Response Relationship DrugCell growthSTAT5 inhibitorsOrganic ChemistryApoptosiSTAT5 inhibitormedicine.disease030104 developmental biologyPharmacology Toxicology and Pharmaceutics (all)biology.proteinCancer researchBCR-ABL-expressing leukemiaDrug Screening Assays AntitumorK562 CellsK562 cellsChronic myelogenous leukemiaChemMedChem
researchProduct

2018

Chardonnay wines from Burgundy, obtained from musts with three levels of clarification (Low, Medium and High) during two consecutive vintages (2009 and 2010) and for two kinds of closures (screw caps and synthetic coextruded closures) were analyzed chemically and sensorially. Three bottles per turbidity level were opened in 2015 in order to assess the intensity of the reductive and/or oxidative aromas (REDOX sensory scores) by a trained sensory panel. The chemical analyses consisted in polyphenols and colloids quantification, followed by a proteomic characterization. For the two vintages, the REDOX sensory scores appeared to be driven both by the type of closure and to a lesser extent by th…

0301 basic medicinebusiness.product_categoryGrape reaction productdigestive oral and skin physiology010401 analytical chemistryfood and beveragesGeneral ChemistryOxidative phosphorylation01 natural sciencesSensory analysis0104 chemical sciencesTyrosol03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryPolyphenolWhite WineBottleFood sciencebusinessMacromoleculeFrontiers in Chemistry
researchProduct

Hsp60 Post-translational Modifications: Functional and Pathological Consequences.

2020

Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The questio…

0301 basic medicinechaperoninnon-canonical functionsReviewMitochondrioncanonical functionsBiochemistry Genetics and Molecular Biology (miscellaneous)Biochemistrychaperonopathies03 medical and health sciences0302 clinical medicineUbiquitinMolecular Bioscienceslcsh:QH301-705.5Molecular Biologybiologycanonical functions chaperonin Hsp60 non-canonical functions post-translation modificationChemistryfungiCitrullinationCell cycleHsp60Cell biology030104 developmental biologylcsh:Biology (General)Mitochondrial permeability transition pore030220 oncology & carcinogenesisChaperone (protein)biology.proteinPhosphorylationHSP60post-translation modificationFrontiers in molecular biosciences
researchProduct